
To Err is Human: Designing
Correct-by-Construction Driver

Assistance Systems using
Cognitive Modelling

Francisco Girbal Eiras

Linacre College, University of Oxford

Supervised by:

Dr. Morteza Lahijanian and Prof. Marta Kwiatkowska

A thesis submitted for the degree of

Master of Science in Computer Science

Trinity 2018

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Morteza

Lahijanian, for his invaluable support and insight. Our meetings were es-

sential to the progress of this dissertation and this project would not have

been this complete without his ideas. I would also like to thank my co-

supervisor, Professor Marta Kwiatkowska for giving me the opportunity

to work on this project.

I would like to thank my academic and college supervisor, Professor

Alessandro Abate, for his help and availability throughout the year. Fi-

nally, I would like to thank my family in general and in particular my

sister, Constança; my dad, António, for always encouraging me to be my

best self and follow my dreams; and my mom, Ana, for her unconditional

support and love.

Abstract

Research into safety in autonomous and semi-autonomous vehicles has,

so far, largely been focused on testing and validation through simulation.

Due to the fact that failure of these autonomous systems is potentially

life-endangering, formal methods arise as a complementary approach.

This thesis studies the application of formal methods to the verification of

different profiles of human drivers (built using the cognitive architecture

ACT-R), and to the design of correct-by-construction Advanced Driver

Assistance Systems (ADAS) using strategy synthesis. The situation con-

sidered is a 2-lane highway scenario and the interactions that arise for

various profiles of drivers (e.g. follow, crash or overtake another vehicle).

The results show that, in this situation, the synthesised ADAS improve

both safety and efficiency of the overall system when compared to the

human driver alone.

The dissertation distinguishes itself from previous work done in this area

due to the complex nature of the scenario considered and the efficient

abstraction techniques introduced which yield compact finite state models.

Additionally, it establishes insightful metrics for verification of the human

driver model and synthesis of ADAS in driving situations, and paves the

way for the establishment of a general framework to tackle similar driving

scenarios.

Contents

1 Introduction 1

1.1 Related Work . 2

1.2 Aims and Contributions . 4

1.3 Thesis Outline . 4

2 Literature Review and Definitions 6

2.1 Cognitive Architectures . 6

2.1.1 Adaptive Control of Thought - Rational (ACT-R) 7

2.2 Integrated Driver Modelling in ACT-R 8

2.3 Probabilistic Model Checking . 11

2.3.1 Markov Chains and Decision Processes 12

2.3.2 Temporal Logics . 15

2.3.3 PRISM Language . 18

2.3.4 Model Checking and Strategy Synthesis in DTMCs and MDPs 20

3 Human Driver Modelling 27

3.1 Continuous Driver Model using ACT-R 27

3.2 Model Abstraction . 33

3.2.1 Non-Probabilistic Control Module 33

3.2.2 Decision Making and Monitoring Module 36

3.2.3 Probabilistic Control Module 40

3.2.4 Unified Two-Module Model 40

3.3 Model Evaluation Metrics . 45

3.3.1 Completeness Properties . 45

3.3.2 Safety Property . 46

3.3.3 Liveness Properties . 47

3.4 Simulation of Paths in the Model . 49

i

4 Advanced Driver Assistance Systems 52

4.1 Driver Assistance System Design . 52

4.1.1 Decision Making-based ADAS 53

4.1.1.1 Decision Making with Fully Compliant Drivers . . . 53

4.1.1.2 Decision Making with Partially Compliant Drivers . 54

4.1.2 Control-based ADAS . 55

4.1.2.1 Active Linear Acceleration Control 55

4.1.2.2 Active Steering Control 56

4.2 Design Evaluation . 58

4.2.1 Multi-Objective Metrics . 58

4.2.2 Test Cases . 59

4.2.3 Overall Comparison . 64

5 Experimental Results 65

5.1 Performance Evaluation of ADAS . 65

5.1.1 State Space and Building Time Results 65

5.1.2 Safety Results . 67

5.1.3 Liveness Results . 70

5.1.4 Discussion . 75

5.2 Demonstration of Possible Extensions 77

5.2.1 Left Lane Penalising . 77

5.2.2 Unsafe by Construction . 80

5.2.3 Three Vehicle Highway Scenario 82

6 Conclusions and Future Work 85

A Code for Human Driver Modelling 88

A.1 ACT-R Implementation (Matlab) . 88

A.1.1 Main Loop . 88

A.1.2 Control Module . 90

A.1.3 Decision Making Module . 91

A.1.4 Monitoring Module . 92

A.2 Control Abstraction (Matlab) . 93

A.3 Decision Making and Monitoring Abstraction (Matlab) 101

A.4 Probabilistic Two Module Model Generator (Python) 103

ii

A.5 Prism Automatic Model Checker (Python) 109

A.6 Storm Automatic Model Checker (Python) 111

A.7 Simulator (Python) . 114

B Code for the Advanced Driver Assistance Systems 120

B.1 MDP Model Generators for Different ADAS (Python) 120

B.1.1 Fully Compliant Drivers in Decision Making 120

B.1.2 Partially Compliant Drivers in Decision Making 126

B.1.3 Additive Linear Control . 134

B.1.4 Additive Steering Control . 141

B.2 Pareto Curve Generator (Python) . 149

B.3 Strategy Synthesis and Simulator (Python) 153

B.4 Prism Automatic Model Checker (Python) 164

C Code for the Experimental Results and Evaluation 167

C.1 Plot Generator for experiments with Human Driver Model (Python) . 167

C.2 Plot Generator for experiments with the Decision Making and Full

Control ADAS (Python) . 173

Bibliography 180

iii

Chapter 1

Introduction

Human safety is an extremely important aspect to consider when analysing possible

transportation solutions. According to a study carried out by the National Highway

Traffic Safety Administration in the USA, over 90% of all road accidents are mainly

attributed to errors of human drivers, caused by distractions, fatigue, alcoholic in-

fluence, among other factors [1]. In an attempt to reduce these numbers, several car

manufacturers have worked on solutions which minimise driver intervention through

the introduction of autonomous features. Vehicles where these elements are present

are ranked as autonomous vehicles of levels 2 or 31, and the features are generally

described as Advanced Driver Assistance Systems (ADAS). Examples include Tesla’s

Autopilot and Ford’s Co-Pilot 360 [3, 4].

While ADAS are more practical for drivers and it would appear they are beneficial in

terms of safety, there are two concerns regarding the way these systems are designed.

Firstly, they are built by humans and, as such, the presence of software mistakes

in the implementation is almost unavoidable, particularly due to the complexity of

the systems in question. An example which supports this concern happened when,

on March 23, 2018, a driver of a Tesla Model X died after the vehicle crashed into

a highway divider in California with Autopilot engaged [5]. The accident was later

attributed to a human error (i.e. a bug in the implementation) in Autopilot [6].

Secondly, existing ADAS lack the capability of understanding the human cognitive

process; hence, they are unable to predict the actions drivers will take and adjust or

suggest safe actions accordingly.

1Autonomous vehicles are ranked on six differing levels of autonomy, from 0 (not autonomous at
all) to 5 (fully autonomous) [2].

1

In order to tackle these issues, formal verification - the act of proving or disproving the

correctness of intended processes underlying a system with respect to a certain spec-

ification [7] - is appropriate to guarantee requirements are fulfilled and the systems

function correctly, and cognitive modelling - the approximation of the human cogni-

tive processes using appropriate frameworks [8] - is useful for the accurate modelling

of the human driver behaviour.

1.1 Related Work

There are several approaches to the study of safety in the context of autonomous

and semi-autonomous vehicles. As Nidhi et al pointed out in [9], a logical approach

would be to test drive these vehicles in real world situations, create evaluation metrics,

make observations on their performance, and apply statistical comparisons against

the baseline that is the human driver. However, Nidhi et al concluded that this would

be infeasible, as the data required to make any statistically relevant conclusions on

the safety of the vehicles would take tens, if not hundreds, of years to collect. An

alternative solution is through the modelling and simulation of the autonomous vehi-

cle, using frameworks which allow testing under different conditions, as proposed in

[10, 11, 12, 13]. Several companies developing autonomous cars have turned to this

solution as a way of obtaining vast amounts of data on the security and reliability

of their vehicles, in order to continuously improve the systems they have designed.

Despite this, it is imperative to recognise the shortcomings of simulation in safety eval-

uation of complex driver assistance systems which could have life-endangering impact

[14, 15]. In this context, formal verification arises as a complementary approach to

simulation, leading to automation and precision in the testing process.

The techniques used in formal verification range from model checking, the process of

verifying through exhaustive search whether a model meets a given specification, to

strategy synthesis, which corresponds to obtaining a the set of actions to be taken

which is guaranteed to satisfy one or multiple requirements (if they exist) [7, 16].

The strategies obtained through synthesis are, by definition, correct-by-construction,

in the sense that they are outputted in the process as a result of the fact that they

are provably correct up to the level of representation of the model [7, 16]. As such,

they do not fall within the implementation mistakes that humans might. The process

of strategy synthesis is widely used nowadays in software development [17, 18, 19].

2

Due to the benefits that formal verification brings to the field, many researchers have

used these tools to evaluate control systems in autonomous vehicles, to verify models

of human driver behaviour, and study cooperation within fleets of these vehicles [20,

21, 22, 23]. In [24], Nilsson et al. took the first step towards correct-by-construction

ADAS by synthesising the control software module for adaptive cruise control from

formal specifications given in Linear Temporal Logic (LTL). In [25], Lam modelled

the behaviour of a distracted human driver using a cognitive architecture in a one-

lane street traffic light scenario (no other vehicles present) and studied how a driver

assistance system could improve the safety of the vehicle, following the work of [26, 27].

Despite these advances, there are many open questions in this area, particularly

whether real data validates the models constructed and, therefore, results obtained;

how to deal with more complex environments and interactions without getting into

representation problems such as state explosion (with an increase of the complexity of

the system to be modelled, the number of variables required rises and the state space

exponentially increases); and whether or not it is possible to represent an arbitrarily

generic situation in this context.

In the case of safety in the context of semi-autonomous vehicles, the mentioned tech-

niques are constrained by the accurate modelling of the human driver. The first

integrated approaches to this problem, proposed in [28, 29, 30], rely on modelling

human behaviour through continuous controllers and specifically engineered frame-

works. However, these methods lack the human behaviour variability attributed to

the discrete nature of the control actions performed by the drivers. With this in

mind, in [31] Salvucci et al proposed a proof-of-concept of the introduction of human

constrains in the driver model through the use of the cognitive architecture Adaptive

Control of Thought-Rational (ACT-R) - a framework for specifying computational

behavioural models of human cognitive performance, embodying both the abilities

(e.g. memory storage and recall or perception) and constraints (e.g. limited motor

performance or memory decay) of the human system [26]. In [26], Salvucci proposed

an updated version of the human driver model initially introduced in [31], which

was improved using the advances in ACT-R and real world data which validated the

model presented.

3

1.2 Aims and Contributions

Following some of the work presented in the previous section, the aim of this project

is to study the application of such techniques to the verification of models of different

profiles of human drivers (built using a cognitive architecture) and design correct-

by-construction advanced driver assistance systems using strategy synthesis under

multi-objective properties.

This thesis extends the work of [20, 25, 26] by considering a 2-lane highway sce-

nario and the interactions that arise for various profiles of drivers (e.g. follow, crash

into or overtake another vehicle), with the primary goal of decreasing accident risk

through the synthesis of an advanced driver assistance system. It takes the first steps

towards the goal of establishing a general framework to tackle the design of ADAS

for different driving situations. In the future, the created framework can be used

to design and deploy the correct-by-construction cognitive modelling-based ADAS in

semi-autonomous vehicles (as a short to medium term goal), and in the long term it

could be used as a way to bootstrap fully autonomous solutions (where the human

behaviour is simulated in the deployed system) which reduce accidents to a minimum

and maximise the efficiency of the vehicles.

The scenario proposed distinguishes itself from previously studied ones due to the

high complexity presented and the implementation of the human driver model using

a cognitive architecture. Through this, the dissertation introduces novel strategies

for accurate abstraction of existing models in order to generate finite state space

discrete-time Markov chain (DTMC) and Markov decision process (MDP) represen-

tations. This thesis is also focused on multi-objective synthesis for the advanced

driver assistance system, with safety and time efficiency being optimised (e.g. to

avoid situations where the system will always slow down instead of overtaking an-

other vehicle), contributing to the practical usefulness of the system for the driver of

the vehicle.

1.3 Thesis Outline

The methodology of the dissertation is supported using several definitions and con-

cepts from the literature which are presented in Chapter 2. Following this, Chapter 3

4

covers the methods applied to the construction of the human driver model, from the

abstraction of Salvucci’s integrated driver model to the establishment of properties

to be verified on the model, as well as a graphical visualisation tool developed. In

Chapter 4, the driver model is transformed and augmented with a driver assistance

system. Several designs are studied and compared, with the best performing one

being the subject of the in-depth analysis presented in Chapter 5. In addition to the

performance evaluation of the ADAS, Chapter 5 is also composed of several examples

of possible extensions of the scenario through the usage of different properties and

assumptions. The thesis is concluded with an evaluation of the work developed and

future directions that research in this area could follow.

5

Chapter 2

Literature Review and Definitions

This chapter presents the concepts and theory required to understand the methodol-

ogy, rationale and contributions of this dissertation. It starts by defining a Cognitive

Architecture, and goes into more detail about Adaptive Control of Thought - Ra-

tional (ACT-R), which is the underlying framework used in the Integrated Driver

Modelling described in Section 2.2 and the basis for the system developed in Chapter

3. The chapter concludes with the introduction of several important concepts in the

area of Probabilistic Model Checking, which are essential for modelling, verification

and synthesis in this context.

2.1 Cognitive Architectures

Different definitions of a cognitive architecture can be found in the literature [32].

According to Sun, a cognitive architecture is a ”broadly-scoped, domain-generic com-

putational cognitive model, capturing the essential structure and process of the mind,

to be used for a broad, multiple-level, multiple-domain analysis of behavior” [33]. In

that sense, a cognitive architecture is no more than a formalised framework of the

perception, memorisation, decision making, reasoning and execution of the human

mind. It is important to note that this architecture should capture both the abilities

(e.g. memory storage and recall, perception or motor action) and constraints (e.g.

memory decay and limited motor performance) of the human system [26].

The idea of a cognitive architecture originated in the early 1970s. A survey by Ko-

rseruba and Tsotsos [32] revealed that, since then, an estimated 195 different cognitive

6

architectures with different assumptions, structural organisations and implementa-

tions have been developed. Applications of these range from the fields of Robotics to

Natural Language Processing [32]. One of the most well known of those architectures

is Adaptive Control of Thought - Rational.

2.1.1 Adaptive Control of Thought - Rational (ACT-R)

Adaptive Control of Thought - Rational (or ACT-R as it is commonly known as) is a

particular cognitive architecture first presented by John R. Anderson in 1983 [8] and

further developed by Anderson et al. in [34].

Figure 2.1 Overview of the ACT-R high level architecture (from [35]).

The architecture can be generally described as two distinct layers: a perceptual-motor

layer and a cognitive layer, as presented in Figure 2.1. The perceptual-motor layer

corresponds to the interface of the cognition with the environment (which plays a key

role in ACT-R), being comprised of modules such as vision and motor actions. The

cognitive layer is focused on memory, which can be divided into two different cate-

gories: declarative (consisting of factual knowledge and goals - e.g. ”The maximum

7

driving speed in a typical UK motorway is 70 mph” or ”Try get to point B”) and proce-

dural (consisting of rules/procedures - e.g. ”If the lead vehicle is going slowly, attempt

an overtake”) [35]. Furthermore, declarative memory is composed of chunks, which

are smaller pieces of information, divided into categories and attributes, that form

more complex memories. In the example ”The maximum driving speed in a typical

UK motorway is 70 mph”, maximum driving speed in a typical UK motorway is

a category, whereas 70 mph is an attribute. Another possible attribute for this cate-

gory could be 113 km/h (since 70mph ' 113km/h).

2.2 Integrated Driver Modelling in ACT-R

The human driver model Salvucci introduced in [26] was developed with a specific

scenario in mind: ”(...) driving a standard midsize vehicle on a multilane highway with

moderate traffic” [26]. It consists of three distinct modules interacting in a sequential

way: control, monitoring, and decision making. A high level schematic of the

model can be found in Figure 2.2.

Decision Making Monitoring Control
Environment

Cognitive Layer Perceptual-Motor Layer

Figure 2.2 High level representation of the architecture presented in [26].

The control component manages both the lower level perception cues and the phys-

ical manipulation of the vehicle (e.g. steering, accelerating or breaking). The module

can be divided into lateral (i.e. steering) and longitudinal (i.e. velocity) control, each

modelled by a separate control law.

The lateral control is determined by the existence of two artefacts that the driver

obtains using lower level perception cues: the near point and the far point. In this

model, ”the near point represents the vehicle’s current lane position, used to judge

8

how close the vehicle is to the center of the roadway (...) [and] is characterized as a

point in the center of the near lane visible in front of the vehicle, set at a distance

of 10 m from the vehicle’s center” while ”the far point indicates the curvature of

the upcoming roadway, used to judge what the driver should execute to anticipate the

upcoming curvature and remain in the current lane” [26]. At any cycle i > 0, the

model works by using perception to determine the visual angles θ
(i)
near and θ

(i)
far and

calculates:

∆θnear = θ(i)near − θ(i−1)near

∆θfar = θ
(i)
far − θ

(i−1)
far

(2.1)

The control law for the steering angle ϕ can be defined as:

∆ϕ = kfar∆θfar + knear∆θnear + kI min (θ(i)near, θmax)∆t (2.2)

with kfar, knear, kI and θmax defined as in [26].

The process for the longitudinal control is very similar. At any cycle i > 0, the model

starts by encoding the position of the lead vehicle and calculating the time headway

thw
(i)
car to it. It then computes:

∆thwcar = thw(i)
car − thw(i−1)

car (2.3)

The control law for the linear acceleration ψ can be written as:

∆ψ = kcar∆thwcar + kfollow(thwcar − thwfollow)∆t (2.4)

with kcar, kfollow and thwfollow defined as in [26].

These control laws can be applied in order to model the behaviour of the driver in

terms of lane keeping and curve negotiation, and generalise to lane changing actions

in a straightforward manner. In order to initiate a lane change, the driver just starts

following the near and far points of the destination lane instead of the current lane,

as Salvucci and Liu presented in [30].

9

The monitoring component maintains situational awareness through the awareness

of the position of other vehicles around the driver’s vehicle. It accomplishes this

through a random-sampling, with probability pmonitor, of one of four areas: either

the left or right lane, and either forward or backward (with equal probability). After

deciding which area to sample (if any), the model uses visual perception to determine

whether a vehicle is present or not. If it is, the distance, lane and direction are saved

in ACT-R’s declarative memory. The value of pmonitor is defined in [26].

Finally, the decision making module uses the information gathered in the mon-

itoring and control stage (if any is available) to determine which tactical decision

should be taken. In this model, the decision corresponds to determining when and

where a lane change should occur. Salvucci describes this process in [26] as: ”If the

driver’s vehicle is in the right lane, the model checks the current time headway to the

lead vehicle (if any); if the lead car time headway drops below a desired time headway

thwpass, the model decides to change lanes to pass the vehicle. If the driver vehicle is

in the left lane, the model checks instead simply for the presence of a lead vehicle. If

there is a lead vehicle, the model remains in the left lane (because this vehicle is also

passing other vehicles); otherwise it decides to [try to] change lanes to return to the

right lane”. This process is summarised in the flowchart presented in Figure 2.3, and

the value of thwpass is defined in [26].

Even after this decision to change lanes is taken, the model must then determine

whether it is actually safe to do so. In order to verify that it is, the model initially

attempts to recall, from the declarative memory, the nearest vehicle to it in the

destination lane. If one is recalled at a distance closer than dsafe, then the change is

aborted. If not, then the vehicle performs a safety monitoring of the destination lane.

If this monitoring does not observe a vehicle at a distance closer than dsafe, then the

vehicle initiates the execution of the lane change. The parameter dsafe is as defined

in [26].

10

Terminate

TRY_CHANGE_LANES(left)

Is the vehicle
currently on

the right lane?

T

thwcar < thwpass

T

F Is there a
car in front

of it?
TRY_CHANGE_LANES(right)

F

F

DECISION MAKING

T

Figure 2.3 Flowchart of part of the decision making process of the model.

2.3 Probabilistic Model Checking

Model checking is a formal verification technique consisting of the process of automat-

ically verifying, through exhaustive search, whether a model meets a given specifica-

tion [7]. A model in this context is considered to be a labelled finite state-transition

system, with states corresponding to configurations of the system and transitions

between states representing the evolution between the said configurations.

Probabilistic model checking is a generalisation of model checking for the automated

verification of systems that exhibit probabilistic behaviour [36, 7]. It should be noted

that this is not to be confused with probabilistic verification, which amounts to partial

state-space exploration [7]. Within this section, important concepts of probabilistic

model checking related to modelling of systems, and verification and synthesis of

models will be explained in detail.

11

2.3.1 Markov Chains and Decision Processes

Probabilistic model checking begins with the appropriate modelling of the system in

a stochastic finite state-transition representation. There are several ways to do this

according to the type of system to be modelled.

In discrete-time Markov Chains (DTMCs), all choices (i.e. transitions) are proba-

bilistic [7]. While this is useful in some cases, others require nondeterminism, which

is where Markov Decision Processes (MDPs) come in. In MDPs, nondeterministic

probabilistic choices coexist. Essentially, a DTMC is an MDP with a uniquely de-

termined probability distribution [7]. Both DTMCs and MDPs can be augmented

with reward structures, which correspond to real positive values assigned to states,

transitions or actions that can be interpreted as bonuses or costs [7].

The formal definitions of DTMCs, MDPs and reward structures follow (adapted from

[7, 36, 37]).

Definition 1. Discrete-time Markov Chain (DTMC)

A discrete-time Markov chain is a tuple M = (S,P, pinit, AP, L) such that:

• S is a countable, non-empty set of states

• P : S × S → [0, 1] is a transition probability function such that for all states

s ∈ S: ∑
s′∈S

P(s, s′) = 1 (2.5)

• pinit : S → [0, 1] is the initial state distribution, such that:∑
s∈S

pinit(s) = 1 (2.6)

• AP is a set of atomic propositions, and

• L : S → 2AP is a labelling function.

M is denoted finite if S and AP are finite sets. �

12

Definition 2. Markov Decision Process (MDP)

A Markov decision process is a tuple M = (S,Act,P, pinit, AP, L) such that:

• S is a countable, non-empty set of states

• Act is a set of actions

• P : S × Act × S → [0, 1] is a transition probability function such that for all

states s ∈ S and actions α ∈ Act:∑
s′∈S

P(s, α, s′) ∈ {0, 1} (2.7)

• pinit : S → [0, 1] is the initial state distribution, such that:∑
s∈S

pinit(s) = 1 (2.8)

• AP is a set of atomic propositions, and

• L : S → 2AP is a labelling function.

An action α ∈ Act is enabled in a state s if, and only if,
∑

s′∈S P(s, α, s′) = 1. Let

Act(s) denote the set of actions enabled in a state s. It must be that for all states

s ∈ S, Act(s) 6= ∅. �

Definition 3. Reward Structures for DTMCs and MDPs

A reward structure for a discrete-time Markov chain M = (S,P, pinit, AP, L) is a

tuple C = (ρ, ι) such that:

• ρ : S → R≥0 is a state reward function

• ι : S × S → R≥0 is a transition reward function

A reward structure for a Markov decision process M = (S,Act,P, pinit, AP, L) is a

tuple C = (ρ, ι) such that:

• ρ : S → R≥0 is a state reward function

13

• ι : S × Act→ R≥0 is an action reward function

�

There are some additional concepts related to DTMCs and MDPs which are relevant

to the understanding of temporal logics and model checking. These are the concepts

of paths in Markov chains or decision processes, and adversary in a Markov decision

process (adapted from [7, 36]).

Definition 4. Paths in DTMCs and MDPs

An (infinite) path π in a discrete-time Markov chain M = (S,P, pinit, AP, L) is

defined as an infinite sequence of states π = s0 → s1 → s2... (also written as π =

s0s1s2...) such that ∀i ≥ 0 : P(si, si+1) > 0.

A finite path ρ in the discrete-time Markov chain M is defined as the prefix of an

infinite path π, ρ = s0 → s1 → ...→ sn for n > 0.

An (infinite) path π in a Markov decision process M = (S,Act,P, pinit, AP, L) is

defined as an infinite sequence of states and actions π = s0
a0−→ s1

a1−→ s2... (also

written as π = s0a0s1a1s2...) such that ∀i ≥ 0 : P(si, ai, si+1) > 0.

A finite path ρ in the Markov decision processM is defined as the prefix of an infinite

path π, ρ = s0
a0−→ s1

a1−→ ...
an−1−−−→ sn for n > 0.

In both Markov chains and decision processes, the set of all infinite paths is denoted

by Paths(M), while the set of finite paths is denoted by Pathsfin(M) �

Definition 5. Adversary (alternatively Strategy or Scheduler)

An adversary for an MDP M = (S,Act,P, pinit, AP, L) is a function σ : S+ → Act

such that σ(s0s1...sn) ∈ Act(sn) for all s0s1...sn ∈ S+.

An adversary σ is called memoryless if, and only if, for any π1 = s0s1...sn and π2 =

s′0s
′
1...sn it is true that σ(π1) = σ(π2) = σ(sn). �

14

2.3.2 Temporal Logics

In order to verify properties in models, there needs to be a way of expressing those

properties formally and unequivocally. While some reachability and reward-based

properties come directly from the definition of DTMCs, MDPs and reward structures

[36], more interesting and complex properties require the use of a temporal logic.

A propositional temporal logic is essentially an extension of propositional logic by

temporal operators [7]. In this context, one can consider time as being linear or

branching. In linear time, at every moment in time there must only exist a single

successor moment, whereas from the branching perspective, there may exist multiple

ones, forming a tree-like structure of alternatives. Linear Temporal Logic (LTL) is a

temporal logic which assumes the first, while Computation Tree Logic (CTL) is based

on the branching perspective. Probabilistic Computational Tree Logic (PCTL) is an

extension of CTL that takes into account a probabilistic operator.

Given the definition of a path in a MC and an MDP, it is possible to define the syntax

and semantics of LTL and PCTL, as shown below (adapted from [7, 36]).

Definition 6. Syntax and Semantics of LTL

An LTL formulae ϕ over a set of atomic propositions AP can formed according to

the following grammar:

ϕ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | Xϕ | ϕ1 U ϕ2 (2.9)

where a ∈ AP , ϕi are path formulas, X is the next operator and U is the until operator

as defined below for Markov chains and decision processes.

For a given path π = s0s1s2... in a discrete-time Markov chainM = (S,P, pinit, AP, L)

(generalising trivially to a Markov decision process):

• π |=true always.

• π |= a if, and only if, a ∈ L(s0).

• π |= ϕ1 ∧ ϕ2 if, and only if, π |= ϕ1 ∧ π |= ϕ2.

• π |= ¬ϕ if, and only if, π 6|= ϕ.

15

• π |= Xϕ if, and only if, s1s2... |= ϕ.

• π |= ϕ1 U ϕ2 if, and only if:

∃i ≥ 0 s.t. (sisi+1... |= ϕ2) ∧ (∀j < i : sjsj+1... |= ϕ1) (2.10)

The operator F (eventually) can also be defined as:

Fϕ = true U ϕ (2.11)

�

It can be noticed that, as a result of the linear time consideration in LTL, all the

formulas are taken over paths. This is not the case in PCTL which can have both

path and state formulae, as shown below.

Definition 7. Syntax and Semantics of PCTL

A PCTL state formulae Φ over a set of atomic propositions AP can formed according

to the following grammar:

Φ ::= true | a | Φ1 ∧ Φ2 | ¬Φ | P.p(ϕ) (2.12)

where a ∈ AP , Φi are state formulas, ϕ is a path formula, p ∈ [0, 1], . ∈ {>,<,≥,≤}
is a probability bound, and P.p is the probabilistic operator as defined below for

Markov chains and decision processes.

For a given state s ∈ S in a discrete-time Markov chain M = (S,P, pinit, AP, L)

(generalising trivially to a Markov decision process):

• s |=true always.

• s |= a if, and only if, a ∈ L(s).

• s |= Φ1 ∧ Φ2 if, and only if, s |= Φ1 ∧ s |= Φ2.

• s |= ¬Φ if, and only if, s 6|= Φ.

16

• s |= P.p(ϕ) if, and only if, Ps(π ∈ Paths(s) : π |= ϕ).p (that is, the probability,

from state s, that ϕ is true for an outgoing path satisfies .p).

A PCTL path formulae ϕ over a set of atomic propositions AP can formed according

to the following grammar:

ϕ ::= XΦ | Φ1 U≤k Φ2 | Φ1 U Φ2 (2.13)

where a ∈ AP , k ∈ N, Φi are state formulas, X is the next operator, U is the until

operator, and U≤k is the bounded-until operator as defined below for Markov chains

and decision processes.

For a given path π = s0s1s2... in a discrete-time Markov chainM = (S,P, pinit, AP, L)

(generalising trivially to a Markov decision process):

• π |= XΦ if, and only if, s1 |= Φ.

• π |= Φ1 U≤k Φ2 if, and only if:

∃i ≤ k s.t. (si |= Φ2) ∧ (∀j < i : sj |= Φ1) (2.14)

• π |= Φ1 U Φ2 if, and only if:

∃i ≥ 0 s.t. (si |= Φ2) ∧ (∀j < i : sj |= Φ1) (2.15)

Similarly to CTL, it is possible to define the operators F (eventually) and G (globally)

as:

FΦ = true U Φ

GΦ = ¬E(¬Φ)
(2.16)

�

While PCTL path formulas are defined above, it should be mentioned that all PCTL

formulas are state formulas, and that path formulas should only appear inside the

probabilistic operator.

17

In relation to the probabilistic operator in PCTL, the generalisation from the Markov

chain to the Markov decision process can be done using the concept of adversary (also

denoted strategy or scheduler), initially introduced in Section 2.3.1. In the case of an

MDP, the operator P.p should be interpreted under the following semantics:

s |= P.p(ϕ) if, and only if, ∀σ ∈ Adv : Prσs (π ∈ Pathsσ(s) : π |= ϕ) . p (2.17)

that is, the probability, from state s, that ϕ is true for an outgoing path satisfies .p

for all adversaries σ ∈ Adv (with Adv constituting the set of all adversaries that the

MDP admits).

2.3.3 PRISM Language

PRISM is a probabilistic model checking tool developed in cooperation between the

Universities of Oxford and Birmingham [38]. It was one of the first tools within

stochastic model checking to be released and its development is currently headed by

David Parker. In order to use PRISM (and other alternative model checking tools), it

is essential to be able to specify the model. To achieve this, the team behind PRISM

developed the PRISM Language, initially described in [39].

A model described in PRISM Language (typically a .pm, .nm or .prism text file)

should contain a keyword that indicates the kind of model to expect. For example,

the keyword dtmc indicates the model is a DTMC (discrete-time Markov chain) and

mdp indicates a MDP (Markov decision process).

PRISM Language uses two different basic components to define a model: modules

and variables. A module is composed of a set of local variables whose behaviour is

described by commands. A general command is of the form:

[] guard -> prob_1: update_1 + ... + prob_n: update_n;

where guard is a boolean expression over the variables, prob i is the probability that

update i will be taken (with
∑

i prob i = 1) and update i is the new value the local

and/or global variables take if the guard is true and a transition is taken to this

configuration.

18

A state of the module is defined as a configuration of its local variables, and a state

of the model is a configuration of the states of all modules which compose it and the

global variables.

In Listing 2.1, an example of a simple MDP model described in PRISM Language

is shown. This example is comprised of two modules, M1 and M2, each with their

own local variables, and no global variables are declared. It should be noted that the

variables in PRISM Language should either be integers (int) or booleans (bool) and

can be initialised by specifying init after the initial declaration. Due to the fact that

we are dealing with finite models, the integers must be in a finite range.

// Example 1 (modified)

// Two process mutual exclusion

mdp

module M1

x : [0..2] init 0;

[] x=0 -> 0.8:(x’=0) + 0.2:(x’=1);

[] x=1 & y!=2 -> (x’=2);

[] x=2 -> 1:(x’=2);

[] x=2 -> 1:(x’=0);

endmodule

module M2

y : [0..2] init 0;

[] y=0 -> 0.8:(y’=0) + 0.2:(y’=1);

[] y=1 & x!=2 -> (y’=2);

[] y=2 -> 1:(y’=2);

[] y=2 -> 1:(y’=0);

endmodule

Listing 2.1 Example of a simple MDP model from [40] (modified)

Models in the PRISM Language can also include formulas, which are expressions that

avoid repetition of code, and labels, which are boolean expressions that identify sets

of states of interest.

19

It is also possible to define rewards structures using the following convention:

rewards "name"

guard: state_reward;

...

[action] guard: transition_reward;

...

endrewards

where the guards are similarly defined as before, but the distinction between state

and transition rewards is defined by the action (which may be empty).

2.3.4 Model Checking and Strategy Synthesis in DTMCs and
MDPs

After the description of the model using a language such as PRISM Language, it is

possible to verify properties on the said model. These properties can be of different

types according to the model and the model checking tool chosen.

In this dissertation, the models built will be represented through discrete-time Markov

chains and Markov decision processes, so the properties of interest tend to be best

expressed in the temporal logics LTL or PCTL. The PRISM model checker allows

a user to import a text file with the probabilistic model, build it and verify LTL

and PCTL properties on it [38]. Another tool used for this purpose is the Storm

model checker [41]. Each of these tools has it strengths and weaknesses. PRISM is an

extremely robust tool, with lots of options in terms of engines to perform the required

calculations, and a graphical interface. Storm is a relatively recent tool which builds

on top of some of PRISM’s features and introduces new ones, such as an optimised

Sparse engine (a great advantage when dealing with models with a small state space)

and conditional properties in DTMCs [41]. However, it does not provide a graphical

interface and is limited in terms of capabilities and I/O. Due to the fact that Storm

builds on top of PRISM, it allows models described in PRISM Language as input and

the properties are specified using the same convention.

In order to illustrate properties, consider the example of Listing 2.1. A PCTL property

in this case could be defined as:

20

P>=0.5 [F x = 2]

This property can be interpreted as ”with probability greater or equal to 0.5, eventu-

ally the model reaches a state where x = 2”. Building the model and verifying the

property yields the value false, which means that, according to this model, there

exists at least one adversary under which this property is not satisfied. Both PRISM

and Storm allow for quantitative probabilistic properties as well. These properties

take different formats in DTMCs and MDPs, as presented below.

// DTMC

P=? [F x = 2]

// MDP

Pmin=? [F x = 2]

Pmax=? [F x = 2]

Instead of returning a boolean value of satisfaction, these return the actual values

of the probabilities of the properties being satisfied. They are, therefore, extremely

useful metrics for model comparison. For the case of the DTMC, due to the fact that

there is no nondeterminism, the probability of a path is uniquely defined (as seen in

Section 2.3.2), and thus can be expressed simply using the operator P=?. For MDPs,

this is not the case. In order to verify the probabilistic operator P.p on the path

formula ϕ, a model checker needs to calculate the following quantities:

pmax,s(ϕ) = sup
σ∈Adv

P σ
s (ϕ)

pmin,s(ϕ) = inf
σ∈Adv

P σ
s (ϕ)

(2.18)

where P σ
s (ϕ) = Prσs (π ∈ Pathsσ(s) : π |= ϕ).

Therefore, PRISM and Storm allow users to access these values by writing properties

using Pmax and Pmin (boolean or quantitative).

Storm allows for conditional probability properties of the type:

P=? [F x=2 || F y=2]

This property can be interpreted as ”what is the probability that the model eventually

21

reaches the state x = 2, given that it eventually reaches the state y = 2”. These

properties, in DTMCs, correspond simply to the application of Bayes’ theorem of

conditional probability, which states that:

Ps(ϕ1 || ϕ2) =
Ps(ϕ1 ∧ ϕ2)

Ps(ϕ2)
(2.19)

For Ps(ϕ2) 6= 0.

Note: while uncommon in mathematical notation, the event ”A conditioned on B”

will be represented throughout the dissertation by A || B, so as to be distinguishable

from the boolean disjunction operator which is represented as A | B (reads ”A or

B”).

It must be emphasised that this is not the case for MDPs, where the existence of

multiple adversaries complicates the calculations of conditional probabilities. Despite

this, [42] presents a polynomial-time algorithm for computing conditional properties

in MDPs which is yet to be implemented in any model checking tool.

This does not mean that it is not possible to reason over conditional probabilities in

MDPs. For some specific scenarios, it is possible to obtain meaningful bounds which

allow comparisons between the ones obtained in DTMCs and MDPs. One of those

scenarios is defined in the proposition below, with the proof following it.

Proposition 2.3.1. Consider a Markov decision processM = (S,Act,P, pinit, AP, L)

which admits adversaries σ ∈ Adv. Let ϕ1, ϕ2 be two PCTL path formulas, such that,

for any path π ∈ Paths(s): π |= ϕ1 ⇒ π |= ϕ2. Assume as well that:

σ′ ∈ arg sup
σ∈Adv

P σ
s (ϕ1 || ϕ2) (2.20)

And that:

P σ′

s (ϕ1) = pmax,s(ϕ1) (2.21)

That is, an adversary which maximises the probability of ϕ1 | ϕ2 also maximises the

probability of ϕ1. In this case it holds that:

22

pmax,s(ϕ1 || ϕ2) ≥
pmax,s(ϕ1)

pmax,s(ϕ2)
(2.22)

with:

pmax,s(ϕ1 || ϕ2) = sup
σ∈Adv

P σ
s (ϕ1 || ϕ2) (2.23)

Proof. Consider σ2 ∈ Adv such that:

σ2 ∈ arg sup
σ∈Adv

P σ
s (ϕ2) (2.24)

Assume, for the sake of contradiction, that:

pmax,s(ϕ1 || ϕ2) <
pmax,s(ϕ1)

pmax,s(ϕ2)
(2.25)

Under adversary σ′, it can be written that, through Bayes’ theorem of conditional

probability:

pmax,s(ϕ1 || ϕ2) = P σ′

s (ϕ1 || ϕ2) =
P σ′
s (ϕ1 ∧ ϕ2)

P σ′
s (ϕ2)

=
P σ′
s (ϕ1)

P σ′
s (ϕ2)

(2.26)

Therefore, it follows that:

P σ′
s (ϕ1)

P σ′
s (ϕ2)

<
pmax,s(ϕ1)

pmax,s(ϕ2)
(2.27)

For this to be true, it must be that P σ′
s (ϕ2) > pmax,s(ϕ2), since P σ′

s (ϕ1) = pmax,s(ϕ1).

This constitutes a contradiction, since in that case σ2 would not maximise the prob-

ability of ϕ2 (pmax,s(ϕ2) = P σ2
s (ϕ2), by definition), a violation of the assumption

described in Equation 2.24. Thus, the proposition is proven. �

In MDPs it is also possible to perform multi-objective verification, whereas multiple

properties will be tested simultaneously (both in PRISM and Storm). One example

of this would be:

23

multi(P>=0 [F x=2], P>=0.2 [F y=2])

The value of the verification of this property corresponds to the boolean conjunction

of the individual properties. It is also possible to optimise over a single property while

constraining other properties, restricting the possibilities in terms of outcomes. An

example of this would be:

multi(Pmax=? [F x=2], P>=0.2 [F y=2])

Finally, it is also possible to perform multi-objective optimisation over the properties

by defining them as (for example):

multi(Pmax=? [F x=2], Pmax=? [F y=2])

This leads to a situation where compromises between the optimisation of either one

of the properties might have to be reached. Pareto curves are the result of the

verification of such properties and their formal definition is presented below (adapted

from [43]).

Definition 8. Multi-objective Query, Pareto Vector and Pareto Curve (al-

ternatively Set)

A multi-objective query (MQ) φ of n objectives is a positive boolean combination of

n predicates of the form ri ≥ vi, where ri is a reward function, vi ∈ Q is a bound.

The notation φ[x], x ∈ Rn is used to denote φ in which each ri ≥ vi is replaced by

ri ≥ xi

Consider a multi-objective query MQ φ of n objectives. The vector x ∈ Rn is a Pareto

vector of φ if, and only if:

1. φ[x− ε] is achievable for all ε > 0, and

2. φ[x + ε] is not achievable for any ε > 0

A Pareto curve of φ is the set of all Pareto vectors that φ admits.

�

24

Thus, the result of the verification of a multi-objective optimisation property corre-

sponds to a Pareto curve (this curve might contain a single vector). Both PRISM

and Storm allow for the verification of properties containing up to 2 objectives each.

As a result, 2D plots are the best way to represent these solutions. In Figure 2.4, the

result of the verification of the property multi(Pmax=? [F G x=2], Pmax=? [F

G y=2]) in the model described in Listing 2.1 is shown. As it can be observed, ei-

ther property can be satisfied with certainty, but not both simultaneously (mutual

exclusion). The light green area under the curve corresponds to the achievable set.

0.0 0.2 0.4 0.6 0.8 1.0
P=? [F G y=2]

0.0

0.2

0.4

0.6

0.8

1.0

P
=

?
[F

G
x
=

2]

Figure 2.4 Example of a Pareto curve represented as a 2D plot.

Each of the values resulting of the verification of quantitative properties in MDPs

(whether they be a single value from a single-objective optimisation, or a Pareto

vector) is the result of an adversary which solves the nondeterminism and converts

the MDP into a DTMC [7]. The process of obtaining the adversary which satisfies

certain properties is denoted by strategy synthesis or adversary generation, and

it is formally defined below.

25

Definition 9. Strategy Synthesis (alternatively Adversary Generation)

Consider a Markov decision process M = (S,Act,P, pinit, AP, L). The process of

maximal (similarly minimal) strategy synthesis of the path formula ϕ is defined as a

process that yields an adversary σ ∈ Adv such that:

σ ∈ arg supσ′∈AdvP
σ′

s (ϕ) (2.28)

(respectively arg inf for minimal), where Adv is the set of all adversaries that M
admits.

�

26

Chapter 3

Human Driver Modelling

In this chapter, the human driver model that Salvucci presents in [26] is implemented

and the metrics used to verify the model are established. Initially, the model is imple-

mented in Matlab based on the integrated driver model. To be able to verify it using

the probabilistic model checking techniques presented in Chapter 2, the model under-

goes an abstraction process, out of which a discrete-time Markov chain is obtained

using several different approaches and assumptions. Metrics are then established to

be able to evaluate whether the model meets the requirements and how well the hu-

man performs in a given situation. Finally, a simulator is presented in Section 3.4 in

order to allow visualisation of paths in the model.

3.1 Continuous Driver Model using ACT-R

In order to obtain a continuous driver model, we interpret Salvucci’s integrated driver

model as presented in [26]. The scenario considered is the one Salvucci envisioned:

a multilane highway with moderate (or low) traffic [26]. The model uses the three

modules presented in Figure 2.2, that is, monitoring, decision making and control.

All these modules rely on the constant update of the environment, as some are based

on visual or low-level perception cues. While the human model is presented clearly in

[26], the dynamics of the car (which is part of the environment) are left to the reader,

as it is outside the scope of the paper. In that sense, some assumptions had to be

made about the environment.

The main initial assumption is that the driver is perfectly aware of its surroundings,

27

and thus it is able to obtain the positions of other vehicles (within a certain distance)

and the near and far points perfectly (this assumption is challenged later in the

abstraction process). Additionally, the environment is assumed to change at the

same rate as a cycle of the ACT-R model.

The overall view of the system is presented in Figure 3.1. The information flow is

marked using the dotted arrows, while the sequential flow of the program is marked in

the filled, lighter gray ones. Both the monitoring and the decision making make use

of the perception which corresponds to querying the environment for the information

(e.g. near and far point or another vehicle’s position). The control both queries

and sends updated information (e.g. vehicle position, velocity and acceleration) to

the environment. Modules are updated sequentially, following the order: control,

monitoring, decision making and environment (e.g. position, velocity and acceleration

of other vehicles).

Control

Monitoring

Decision making

Reached
destination?

Terminate

HUMAN DRIVER

T

F

Environment

information flow

sequential flow

Figure 3.1 Continuous Driver Model overview.

The monitoring module is implemented according to the flowchart presented in Fig-

ure 3.2, from the description given in [26]. The threshold for monitoring is set at 0.2,

28

as this is the value suggested by Salvucci in [26]. The output of this process corre-

sponds to altering the global variable a corresponding to the declarative memory cell

composed of k chunks. No specific value for k is given by Salvucci in [26], but it is

taken to be 8 from [25]. The function GET DISTANCE is not described in depth due to

the fact that it is trivial under the assumption stated previously.

The overall flowchart of the decision making module is shown in Figure 3.3. The high

level part is similar to the flowchart presented in Figure 2.3, with small differences

related to the loading of variables and information from the different memories avail-

able. It is worth noticing that the module makes use of the function LOOK VEHICLE

initially presented in the monitoring module to verify the presence of a vehicle in

a relative position of a lane. The flow of the function SET LANE FOLLOWING is also

omitted due to the trivial nature of this function under the assumptions made.

Finally, a flowchart for the control module is presented in Figure 3.4. This module

is responsible for the calculation of ∆ϕ(t) and ∆ψ(t) and the update of the position.

Given these two values, the position is updated following discrete laws of motion

applied to rigid objects, particularly:

v(t) = v(t− 1) + a(t)∆t

x(t) = x(t− 1) + v(t− 1)∆t+
1

2
a(t)∆t2

t = t+ ∆t

(3.1)

where x(t) = (x(t), y(t)), v(t) = (vx(t), vy(t)), and a(t) = (ax(t), ay(t)), with:

ax(t) = ∆ψ(t)

ay(t) = sin(∆ϕ(t))
(3.2)

In this case, as Salvucci mentions in [26], ∆t = 0.5s. It is also assumed that the

vehicle complies with the speed limits, and, therefore, vx ∈ [15, 34] m/s (between

50km/h and 120km/h - typical limits in highway speeds).

Using these assumptions, the continuous driver model is implemented in Matlab as

presented in Appendix A.1.

29

random 0 < pm < 1

0 < pm < 0.25

0.25 < pm < 0.5

0.5 < pm < 0.75

info = LOOK_VEHICLE(left, front)

info = LOOK_VEHICLE(left, back)

info = LOOK_VEHICLE(right, front)

info = LOOK_VEHICLE(right, back)

random 0 < pmonitor < 1

0 < pmonitor < 0.2

T

T

T

F

F

F

ADD_TO_MEMORY(info)

Terminate

MONITORING

T

F

LOOK_VEHICLE(L, D)

info = (lane, direction, FALSE)

Is there a vehicle in
lane L and in

direction D of our
vehicle?

T
distance = GET_DISTANCE(L, D)

F

info = (lane, direction, TRUE, distance)

RETURN info

ADD_TO_MEMORY(info)

For i = k downto 2: a[i] = a[i-1]

Terminate

a[1] = info

Figure 3.2 Flowchart of the Monitoring module.

30

Terminate

DECISION MAKING

TRY_CHANGE_LANES(left)

Is the vehicle
currently on the

right lane?

T

𝑡ℎ𝑤$%& < 𝑡𝑤ℎ(%))

T

F Is there a car in
front of it?

LOAD_FROM_MEMORY(CURRENT_LANE,𝑡ℎ𝑤$%&)

LOAD_FROM_DEC_MEMORY(CAR_IN_FRONT?)

TRY_CHANGE_LANES(right)
F

F

T

Terminate

TRY_CHANGE_LANES(destination)

𝑏𝑎𝑐𝑘 	= LOOK_VEHICLE(destination, back)

𝑓𝑟𝑜𝑛𝑡 	= LOOK_VEHICLE(destination, front)

distance > 𝑑,-./ ?

T

𝑐𝑙𝑜𝑠𝑒𝑠𝑡 ≠ ∅?

closest = min
9:,;-<=/

SEARCH_IN_DEC_MEMORY(destination, any, TRUE, distance)

F F

T

Is there a
vehicle in 𝑏𝑎𝑐𝑘

or 𝑓𝑟𝑜𝑛𝑡?

T
∀𝑣: 	𝑑𝑖𝑠𝑡B > 𝑑,-./?

T

F F

SET_LANE_FOLLOWING(destination)

Figure 3.3 Flowchart of the Decision Making module.

31

lane = LOAD_FROM_MEMORY(l_follow)

𝜃"#$%& , 𝜃($%
& = LOAD_FROM_MEMORY(far_last, near_last)

𝑡ℎ𝑤-$%(&) = LOAD_FROM_MEMORY(thw_car)

Δ𝜑 = 𝑘($%Δ𝜃($% +𝑘"#$%Δ𝜃"#$% + 𝑘4 min 𝜃"#$% , 𝜃"8$9 Δ𝑡

Δ𝜓 = 𝑘-$%Δ𝑡𝑤ℎ-$% +𝑘(;<<;=(𝑡𝑤ℎ-$% − 𝑡𝑤ℎ(;<<;=)Δ𝑡

TerminateCONTROL

(NP, FP) = GET_NEAR_FAR_POINT(lane)

𝜃"#$% =	GET_NEAR_ANGLE(NP, FP)

𝜃($% =	GET_FAR_ANGLE(NP, FP)

𝑡ℎ𝑤-$% =	CALCULATE_TIME_HEADWAY()

Δ𝜃"#$% = 𝜃"#$% 	− 𝜃"#$%(&)

Δ𝜃($% = 𝜃($% 	− 𝜃($%
(&)

Δ𝑡ℎ𝑤-$% = 𝑡ℎ𝑤-$% − 𝑡ℎ𝑤-$%(&)

SAVE_TO_MEMORY(𝜃"#$% , 𝜃($% , 𝑡ℎ𝑤-$%)

UPDATE_POSITION(Δ𝜑, Δ𝜓)

UPDATE_POSITION(Δ𝜑, Δ𝜓)

𝑣%′, 𝑣(′ = 𝑣%, 𝑣(+ 𝑎%, 𝑎(⋅ Δ𝑡

𝑥/, 𝑦′ = 𝑥,𝑦 + 𝑣%′, 𝑣(′ ⋅ Δ𝑡 +
1
2 ⋅ 𝑎% ,𝑎(⋅ Δ𝑡 3

𝑎% ,𝑎(= (sin(Δ𝜑), Δ𝜓)

Terminate

𝜑 = 𝜑′

𝜓 = 𝜓′

𝑣%, 𝑣(= 𝑣% ′, 𝑣(′

𝑥,𝑦 = 𝑥′,𝑦′

Figure 3.4 Flowchart of the Control module.

32

3.2 Model Abstraction

The process of abstraction consists in transforming the evolution of the continuous

variables that constitute the model and discretising it in order to obtain a finite

discrete model. In this case, the goal is to go from the continuous model of driver

behaviour presented in the previous section to a discrete-time Markov chain (DTMC)

which represents the same process. This transformation is less than trivial due to the

fact that, in model checking of finite state abstractions, as the number of state vari-

ables in the system increases, the size of the system state space grows exponentially

[44]. This problem is known as state explosion, and there has been some research into

efficient ways of dealing with it [45, 46].

In the following sections, the abstraction process for the different modules of ACT-R

is presented in detail, as well as the thought process behind the choices made. Finally,

the unified model is presented using the different modules designed.

3.2.1 Non-Probabilistic Control Module

The control module, as presented in the previous section and following Salvucci’s

approach in [26], is fully deterministic, in the sense that there is no probabilistic

reasoning involved. It makes use of perception (for the near and far points) and

two simple control laws which influence the position, velocity and acceleration of the

vehicle in the environment.

The straightforward approach to this problem would be to represent it as a simple

N ×M grid, in which a tuple (x, y) with x ∈ {0, ..., N} and y ∈ {0, ...,M} would

describe the position of the vehicle, and all other variables (i.e. vx, vy, ax, ay and t)

would be integer versions of its continuous model representation. In this approach,

the control laws could be applied directly over the grid and the results would be

the movement of the vehicle in it. However, there is an intrinsic problem with this

approach. The error associated with the use of the grid as a way to discretise space

would, logically, be reduced with an increase of N and M for a representation of the

same road segment (i.e. increase in resolution). For example, the error associated

with a road segment of 500 × 7m2 represented by N = 500 and M = 7 (each grid

square corresponds to 1m2) would be significantly greater than if N = 5000 and

M = 70 (each grid square corresponds to 10−2 m2). The conclusion would be that

33

one should increase N and M in order to obtain an appropriate resolution, but this

incurs in the problem of state explosion presented in the beginning of the section: as

the variable ranges increase, the number of states in the system grows exponentially.

Thus, while the situation of N = 5000 and M = 70 is appealing in terms of error

minimisation, it would be intractable to actually build and perform model checking

on it (e.g. for vx, vy ∈ {15, ..., 34} and ax, ay ∈ {−3, ..., 3}, the control module alone

would have approximately 6.89 × 109 states, making it impossible to add decision

making and monitoring on top of it).

The straightforward strategy is not, by any standards, efficient in terms of state space

and does not use any of the information of the problem to simplify it. In particular,

one should notice that, in this scenario, the movement in the y direction is used

simply for the purpose of lane changing, a process which is purely deterministic (as

described in [26]). Therefore, a more interesting approach to the abstraction of the

control module could take this into account and pre-simulate the lane changing

operations.

In this approach, the vehicle’s position is represented by two discrete integer variables

x ∈ {0, ..., length} for a given length and lane ∈ {right, left} (can be extended to

more than two lanes), and the acceleration and velocity of the vehicle are simply a =

ax and v = vx. Time is still represented in the same way, with t ∈ {0, ...,max time}. If

a lane change is decided by the decision making module, then, within one transition

of the control, the lane variable is updated with the final destination lane, and the

variables x, v, a and t are updated to reflect the obtained values after a lane change.

These values are obtained from a look-up table and depend on the distance to the

other vehicle (d) and the velocities of both the vehicle in question (v) and the other

vehicle (v1) (an obstacle on the road can be modelled by setting v1 = 0). Additionally,

the variable crashed is used to represent whether the vehicle has collided in the

process or not. The linear acceleration is implemented similarly using pre-simulation

to determine the value of acceleration and the motion law is updated in the model

itself.

The continuous model of driver behaviour obtained in the previous section in Matlab

is used as the basis for the simulation of lane changes and linear acceleration. From

this model, look-up tables are obtained which, given an origin lane (olane), a distance

to the other vehicle and the velocities of both the vehicle in question and the other

vehicle determines whether a crash happened or not, what is the ∆x and ∆T incurred

34

(how did the position in x changed and how long did it take), and the final velocity

of the vehicle in question. The code presented in Appendix A.2 corresponds to a

similar version of the control (but probabilistic, as presented later in this section).

An example of the simulation of the scenario olane = 1, d = 20m, v = 15m/s and

v1 = 15m/s is shown in Figure 3.5.

0 20 40 60 80 100 120

x [m]

0

1

2

3

4

5

6

7

y
[m

]

Main Vehicle

Lead Vehicle

Figure 3.5 Example of the simulation of the lane change for olane = 1 (right
lane), d = 20m, v = 15m/s and v1 = 15m/s. In this case, after
the change is complete the variable assignments are crashed = 0 (no
collision happened), ∆x = 119m, ∆T = 6s and v = 23m/s.

This process focuses the computational effort on the pre-calculations, simplifying the

final model significantly in terms of the state space, while removing the error made by

discretising in the y direction of the grid (the error in the x direction is still present

though). With regards to the size of the lane changing table, for the considered

scenario of 2 lanes, v, v1 ∈ {15, ..., 34} and for any discrete d ∈ {1, ..., length}, the

size of the table would be 2× 202× length = 800× length. Given that the only value

of the table that is effectively altered with a change in d is the value of crashed (as

the ∆x, ∆T and final v depend solely on the initial velocities of both vehicles), it is

possible to define dmax such that:

35

dmax < length, s.t. ∀v, v1 ∈ {15, ..., 34}, d′ ≥ dmax : crashedd′ = false (3.3)

that is, dmax is a great enough value of d such that, regardless of the speed of the two

vehicles, no crash will occur between them. With this change, it is possible to reduce

the table from 800× length to 800× dmax (since all other rows would be equal to the

one for dmax). For the given ranges of v and v1, dmax is determined to be 43m, and

thus the obtained look-up table contains 34, 400 rows.

The linear acceleration table depends on the thwcar which varies only with the distance

to the other vehicle and the current velocity of the vehicle in question. Considering

the distance in this case to be up to 80m (otherwise maximum acceleration will be

applied), the look-up table generated has 1, 600 rows.

3.2.2 Decision Making and Monitoring Module

Due to the fact that, in the model presented by Salvucci in [26], the monitoring

module influences the declarative memory which is then used exclusively for decision

making purposes (and not for control), logically these two can be incorporated into

one for abstraction purposes. Again, taking the straightforward approach of trying

to include the declarative memory and the process associated with monitoring and

decision making into the model directly would make it intractable.

In its simplest form, the decision making process for the right lane consists in localis-

ing the other vehicle and deciding whether or not to change lanes based on the time

headway, thwcar, to the lead vehicle (if there is one). This value essentially corre-

sponds to the time the vehicle in question has before it crashes into the lead vehicle,

assuming that latter came to a full stop (v = a = 0) [47]. The lower this time head-

way, the more likely a driver is to perform the manoeuvre. While Salvucci presents a

fully deterministic driver in [26] based on the average driver, in this dissertation it was

decided to try and analyse drivers according to different profiles in order to simulate

how different parts of the population of drivers might make decisions. The decision

making in such a case follows from a stochastic reasoning which can be simulated and

incorporated in the model using look-up tables.

36

In this case, for a driver in the right lane, it was decided to model the probability of

the driver performing a lane change based on the time headway as an exponentially

decreasing function, writing it as:

P[lC = true]thw = PlC(d, v) = e−α·thw = e−α·d/v (3.4)

where α is a parameter unique to each population of drivers.

The same logic can be applied for a driver in the left lane overtaking a vehicle behind

it in the left lane, except in this case the opposite effect will be seen in the decision

making. In such a case, the probability of changing lane can be modelled as a nor-

malised logarithmic function over the distance of the vehicles (it doesn’t make sense

to define time headway in this context):

P[lC = true]d = PlC(d) =
1

log(β ·maxd +1)
· log(β · d+ 1) (3.5)

where maxd is the maximum length considered and β is a parameter unique to each

population of drivers.

It should be noted that these functions, while logical, are an assumption of the ab-

straction, since the model presented by Salvucci in [26] does not make any reference

to these parameterisations. It is also worth referring that, while there was no real-

world data involved in this project, this function could have been learnt from real

data without changing the fundamental paradigm of the abstraction.

For the purposes of analysis, three classes of drivers are considered: Aggressive,

Average and Cautious drivers (with different values for the parameter α and β).

In Figure 3.6, the functions are presented for the three profiles of drivers assumed in

this project, for the lane changes originating in the right (Figure 3.6 (a)) and left lane

(Figure 3.6 (b)).

So far, this version of decision making is not influenced by the monitoring module

at all, and it relies on the correct calculation of the value of thwcar and d. This

assumption is unrealistic, and in order to simulate these issues, it was decided that

stochastic noise could be added to the measurement of the distance (as this is what

37

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
thwcar [s]

0.0

0.2

0.4

0.6

0.8

1.0
P

[l
C

=
tr
u
e]

Aggressive

Average

Cautious

a. Aggressive (α = 1), Average (α = 0.6) and Cautious (α = 0.4) drivers.

0 10 20 30 40 50 60 70 80

d [m]

0.0

0.2

0.4

0.6

0.8

1.0

P
[l
C

=
tr
u
e]

Aggressive

Average

Cautious

b. Aggressive (β = 1000), Average (β = 0.5) and Cautious (β = 0.01) drivers.

Figure 3.6 P[lC = true] as a function of thwcar and d for vehicles originating
from the right lane (a) and left lane (b).

38

human drivers have to instinctively measure through perception). It was chosen that

this noise, n, would be normally distributed as:

n ∼ N (0, σ) (3.6)

such that:

thw′car = thwcar + n(thwcar) (3.7)

Alternatively, this can be represented directly as (using discrete integration steps of

width δ):

P ′lC(d, v) =
+∞∑
i=−∞

[N(d+ i+ δ/2)−N(d+ i− δ/2)] · PlC(d+ i, v)

=

+maxd∑
i=−maxd

[N(d+ i+ δ/2)−N(d+ i− δ/2)] · PlC(d+ i, v)

(3.8)

where maxd is the maximum length considered and N(d) corresponds to the cumula-

tive probability function (CDF) defined as:

N(d) =

∫ d

−∞
n(t)dt (3.9)

From this, a look-up table can be generated which, for different driver types, yields

the probability of lane changing for a certain distance to the lead car and velocity.

For the 3 driver profiles mentioned, considering d ∈ {1, ..., 80} (maxd = 80) and

v ∈ {15, ..., 34}, the table generated for the vehicle in the right lane has 4, 800 rows 1.

Under the same conditions, the look-up table for the vehicle in the left obtained has

240 rows (the difference is explained by the fact that the velocity does not influence

this table). Thus, the unified decision making table has 5, 040 rows.

The code presented in Appendix A.3 corresponds to the methods used to obtain the

unified look-up table used for the decision making and monitoring module.

1In the data obtained for the results presented in this dissertation, δ = 1.

39

3.2.3 Probabilistic Control Module

In light of the uncertainty introduced in the decision making and monitoring module

regarding the visual perception of distance, it becomes only natural that this would

be extended to the control module as well. In order to cope with this, a probabilis-

tic version of the control module was designed, where the noise n presented in the

previous section is taken into consideration.

In order to obtain the equivalent look-up tables for the probabilisitic control module,

the Monte Carlo method can be used. In this case, the noise can be simulated

in repeated trials, and an average can be obtained for the crashing probability, the

estimated final difference in position, the estimated difference in time and estimated

final velocity of the vehicle. In the case of this dissertation, the tables generated (for

linear and lane changing control) were the result of 100 trials.

The code presented in Appendix A.2 corresponds to the simulation of this probabilistic

version of the control, which generates the linear and steering control tables.

3.2.4 Unified Two-Module Model

Using the three tables generated (two for the probabilisitic control - linear and steering

control - and one for the decision making), the final DTMC model unifies both using

a sequential variable actr state ∈ {1, 2}, where actr state = 1 corresponds to the

control and actr state = 2 corresponds to decision making. In the version of the

unified model built for this thesis, only two vehicles are present: the first is the one

controlled by the driver and the second is a lead vehicle starting at a distance x = x1,0

(in meters) from the main vehicle (which starts at x = 0) and moves with a constant

speed of v1 on a road segment of length meters. The movement of the lead vehicle

is, therefore, completely determined by the formula:

x1(t) = x1,0 + v1 · t (3.10)

The distance between the two vehicles can be obtained as:

d(t) = |x(t)− x1(t)| (3.11)

40

And the boolean function posDist can be defined as:

posDist(t) =

{
true, if x(t) ≥ x1(t)

false, otherwise.
(3.12)

Due to the large size of the tables generated, the models should be generated auto-

matically for a given tuple of initial conditions (dtype, v, v1, x1,0) (where dtype is the

driver class according to the ones defined in the decision making and monitoring sub-

section - 1 is aggressive, 2 is average and 3 is cautious), following the assumptions

described below:

General assumptions

1. A transition from state s to state s′ is possible if, and only if, the variable

actr state takes different values in s and s′.

2. A transition from state s to state s′ is possible if, and only if, ts′ ≥ ts (where tα

is the value of variable t in state α).

3. The model should have no states with self transitions, as there is always a

continuous evolution of the state of the vehicles.

4. A deadlock state should only be entered if, and only if, the vehicle either crashes

(crashed = true) or reaches the end of the road (x = length).

Control (actr state = 1)

1. If no lane change has been decided, the model reasons over linear acceleration

using the corresponding look-up table for d(t) and v(t), and updates the state

variables t, x, v, a and crashed accordingly using the discrete laws of motion

previously presented.

2. If a lane change has been decided, the model reasons over the lane change

using the corresponding look-up table for olane, d(t), v(t), v1, and updates the

variables x and t incrementally using the values ∆x and ∆T of the table, as

well as sets the value of v and crashed.

41

Decision Making and Monitoring (actr state = 2)

1. If the vehicle is on the left lane and behind the other vehicle (lane = left and

posDist = false), the model will not attempt a lane change.

2. If the vehicle is on the left lane and in front of the other vehicle (lane = left

and posDist = true), the model will reason over lane changes using the decision

making and monitoring look-up table for dtype.

3. If the vehicle is on the right lane and behind the other vehicle (lane = right and

posDist = false), the model will reason over lane changes using the decision

making and monitoring look-up table for dtype.

4. If the vehicle is on the right lane and in front of the other vehicle (lane = left

and posDist = true), the model will not attempt a lane change.

From these rules and the tables obtained in the abstraction of the individual modules,

it is possible to build a model generator. The code for an example of such a gener-

ator written in Python (used throughout the rest of the dissertation) is presented in

Appendix A.4.

By running the model generator using the conditions (dtype, v, v1, x1,0) = (1, 30, 22, 51),

that is, an aggressive driver, starting at 30m/s with another vehicle going at 22m/s

and starting at 51m, the resulting model description is the one presented in Listing 3.1

(shortened for the sake of space saving; the full model is 13, 435 lines long).

//Model automatically built using model_generator.py for v1 = 22 and

driver_type = 1 (to alter these values, run the script again).

//Generated on 31-07-2018 at 18:47.

dtmc

const int length = 500; // road length

const int driver_type = 1; // 1 = aggressive, 2 = average, 3 = cautious

drivers - do not alter this manually!

const int max_time = 35; // maximum time of experiment

// Other vehicle

const int v1 = 22; // do not alter this manually!

const int x1_0 = 51;

42

// Environment variables

global t : [0..max_time] init 0; // time

global crashed : bool init false;

// Vehicle controlled

global actrState : [1..2] init 1; // active module: 1 = control (both cars

), 2 = decision making + monitoring

global lC : bool init false; // lane changing occuring?

global x : [0..length] init 0;

global v : [15..34] init 30;

global a : [-2..3] init 0;

global lane : [1..2] init 1;

formula x1 = x1_0 + v1*t;

formula dist = x1>x?(x1 - x):(x - x1);

formula positiveDist = (x < length)?x > x1:true;

module Decision_Making_Monitoring

// If a crash occurs, then nothing else can happen

//[] actrState = 2 & crashed -> 1:(crashed’ = true);

// If we are in lane 2, but behind the other vehicle, don’t try to pass

[] actrState = 2 & !crashed & lane = 2 & positiveDist = false -> 1:(

actrState’ = 1);

// If we are in lane 1, and no vehicle is in front, don’t change lanes

[] actrState = 2 & !crashed & lane = 1 & positiveDist = true -> 1:(

actrState’ = 1);

[] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist = 1

& v = 15 -> 0.8:(actrState’ = 1) & (lC’ = true) + 0.2:(actrState’ =

1) & (lC’ = false);

...

[] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist >=

80 -> 1:(actrState’ = 1) & (lC’ = true) + 0:(actrState’ = 1) & (lC’

= false);

endmodule

module Control

// If we are in lane 1, and no lane change was decided, continue forward

(which might result in crash)

// The vehicle is behind the other driver (positiveDist = false, x < x1)

[] actrState = 1 & !crashed & !lC & lane = 1 & x <= length - v & t < max

43

_time & positiveDist = false & (x1 + v1 - x - v) >= 6 & v + a < 34 &

v + a > 15 & dist = 1 & v = 15 -> 1:(x’ = x + v) & (t’ = t + 1) & (

v’ = v + a) & (a’ = -2) & (actrState’ = 2);

...

[] actrState = 1 & !crashed & lC & lane = 2 & dist >= 43 & v = 34 & x >

length - 136 & t > max_time - 6 -> 1:(crashed’ = false) & (x’ =

length) & (v’ = 34) & (t’ = max_time) & (a’ = 0) & (lane’ = 1) & (

actrState’ = 2) & (lC’ = false);

endmodule

Listing 3.1 Example of the model generated for the tuple (dtype, v, v1, x1,0) =
(1, 30, 22, 51) (shortened)

By loading and building the model in either PRISM or Storm, it is observable that

it has 257 states and 295 transitions, a significant reduction from the possibilities

presented in the straightforward control abstraction. Due to the fact that there are

3× 20× 20× length different possibilities in terms of initial conditions, it would be

intractable, in the timeline of the dissertation, to obtain the number of states for all

the combinations. Table 3.1 presents the number of states and transitions for some

arbitrarily generated conditions (for a road of length 500m).

dtype v v1 x1,0 # States # Transitions

3 21 30 20 305 333

1 27 22 66 396 471

1 28 17 43 167 183

2 33 15 35 6 7

3 28 21 38 199 222

1 19 16 81 391 443

2 25 23 28 390 481

3 15 17 36 487 569

1 29 18 74 201 220

2 31 29 52 234 265

Table 3.1 Results of the number of states and transitions for arbitrary initial
conditions.

44

3.3 Model Evaluation Metrics

With the model efficiently represented as a DTMC through abstraction, it becomes

possible to perform model checking of certain properties on it in order to evaluate

the relative performance of different profiles of drivers. In the following subsections,

different categories of evaluation are presented and properties representing metrics

within that category are proposed and tested in a small population of scenarios (the

same test cases used to generate Table 3.1). In the rest of the dissertation it is

assumed (unless explicitly mentioned otherwise) that the road segment has a length

of 500m.

3.3.1 Completeness Properties

From the rules used to build the model, it is explicit that a correct model should only

enter a deadlock if it crashes or the vehicle reaches the end of road. As such, it is

expected that every path from the initial state leads to states where the vehicle is in

one of those two conditions. This property can be explicitly written as:

P>=1 [F (crashed | x=length)]

and it tests whether a model is complete by verifying that every possible outcome

satisfies the restrictions imposed (regardless of the value of the other variables). Ad-

ditionally, both PRISM and Storm allow the following property to be verified:

P>=1 [F "deadlock"]

which guarantees that a deadlock will eventually be reached and no infinite loop is

generated by mistake within the DTMC.

Using PRISM or Storm, the results of the model checking of these properties in the

test cases are presented in Table 3.2. As expected, for all the scenarios the proper-

ties are satisfied, confirming that these models are complete in terms of the expected

outcome. While these properties do not need to be extensively analysed, they con-

stitute a guarantee that the generated model is complete. As such, its verification is

performed in all tests done in the analysis of Chapter 5.

45

dtype v v1 x1,0 P>=1 [F (crashed | x=length)] P>=1 [F "deadlock"]

3 21 30 20 true true

1 27 22 66 true true

1 28 17 43 true true

2 33 15 35 true true

3 28 21 38 true true

1 19 16 81 true true

2 25 23 28 true true

3 15 17 36 true true

1 29 18 74 true true

2 31 29 52 true true

Table 3.2 Results of the verification of the completeness properties.

3.3.2 Safety Property

One essential evaluation metric of the human driver is its capability of driving safely,

i.e. without crashing. To that effect, the following safety property is devised:

P=? [F crashed]

It should be noted that, for a given set of initial conditions, the lower the quantitative

value of the property, the safer the driver is. From the assumptions made in the

abstraction process, it is expected that Aggressive drivers will perform worse than

Average ones in this metric, which in turn will perform worse than Cautious drivers.

Extensive experimental results regarding this property are presented in Chapter 5.

The results of the verification of the safety property in the test cases are presented

in Table 3.3. It can observed that these vary quite significantly according to the

situation, with the quantitative values ranging from 0.0193 (unlikely to crash) to 1

(will crash with certainty).

46

dtype v v1 x1,0 P=? [F crashed]

3 21 30 20 0.0232

1 27 22 66 0.3017

1 28 17 43 0.7119

2 33 15 35 1

3 28 21 38 0.1604

1 19 16 81 0.6074

2 25 23 28 0.0562

3 15 17 36 0.0276

1 29 18 74 0.5123

2 31 29 52 0.0193

Table 3.3 Results of the verification of the safety property.

3.3.3 Liveness Properties

Liveness can be defined in terms of the efficiency of the drivers, i.e. how quickly do

they reach the end of the road. One of the variables of the model is the time, t, in

seconds since the beginning of the execution. For a given constant T , the property:

P=? [F (x=length & t < T)]

captures the probability of reaching the end within less than T seconds. It should be

noted that this constant T needs to be adjusted to different values in order to test

specific properties, so this property should actually be defined as the list of properties:

P=? [F (x=length & t < 1)]

P=? [F (x=length & t < 2)]

...

P=? [F (x=length & t < max_time-1)]

P=? [F (x=length & t < max_time)]

However, the problem with these properties is based on the fact that they intrinsically

rely on the safety property, since a higher probability of crashing naturally implies

a lower probability of reaching the end, and, therefore, an even lower probability of

reaching the end under T seconds. To mitigate this issue, the following conditional

47

properties are introduced:

P=? [F (x=length & t<T) || F (x=length)]

which reads as ”what is the probability that the model eventually reaches a state where

x = length and t < T given that it reaches one where x = length”. This allows

for direct comparisons between driver profiles and different scenarios. It should be

noted that these are actually max time different properties, as with the case of the

unconditional ones.

Using Storm, both the unconditional and conditional properties can be verified di-

rectly. While PRISM supports the unconditional ones, conditional properties are not

yet supported by the tool. However, it is possible to verify separately the properties

P=? [F (x=length & t<T)] and P=? [F (x=length)], and use Bayes’ theorem

to calculate:

P=? [F (x=length & t<T) || F (x=length)] =
P=? [F (x=length & t<T)]

P=? [F (x=length)]
(3.13)

Table 3.4 presents the results of the verification of the liveness properties in the test

cases. In the interest of brevity, only two of each (unconditional and conditional)

properties verified are presented, for T = 19 and T = 24 (arbitrarily selected), and

they will be identified using the following number system (for presentation purposes):

1. P=? [F (x=length & t<19)]

2. P=? [F (x=length & t<24)]

3. P=? [F (x=length & t<19) || F (x=length)]

4. P=? [F (x=length & t<24) || F (x=length)]

From Table 3.4, it is possible to observe that different scenarios, despite having

distinct values of the unconditional properties, have a similar value of the condi-

tional ones. For example, for T < 24, the scenario (dtype, v, v1, x1,0) = (1, 28, 17, 43)

has a a significantly lower unconditional probability than the (dtype, v, v1, x1,0) =

(3, 28, 21, 38), yet they have exactly the same conditional one. While the uncon-

ditional properties can be interpreted in these scenarios as ”the vehicle will reach the

end of the road and be under 24s with probability 0.2881” and ”the vehicle will reach

48

dtype v v1 x1,0 1 2 3 4

3 21 30 20 0.0085 1 0.0085 1

1 27 22 66 0.5908 0.6983 0.8460 0.9999

1 28 17 43 0 0.2881 0 1

2 33 15 35 0 0 0 0

3 28 21 38 0 0.8396 0 1

1 19 16 81 0 0.3926 0 0.9999

2 25 23 28 0.1555 0.9438 0.1648 0.9999

3 15 17 36 0 0.5849 0 0.6015

1 29 18 74 0.4662 0.4877 0.9559 1

2 31 29 52 0.9992 0.9992 1 1

Table 3.4 Results of the verification of the liveness properties.

the end of the road and be under 24s with probability 0.8396”, in both these cases

the conditional probability should be interpreted as ”if the vehicle reaches the end of

the road, then it will do so before 24s with certainty”. The conditional property can

be understood as an elimination of the safety bias inherent to each scenario, lead-

ing to more meaningful inter-situational comparisons. Extensive experimental results

regarding these properties are presented in Chapter 5

3.4 Simulation of Paths in the Model

In order to visualise possible executions of the trajectory and decisions taken in the

model, a visual simulator was designed and implemented in Python, with the code

presented in Appendix A.7.

The simulator essentially uses the option simpath in the PRISM command line tool

which allows it to output a simulated path in the model without having to actually

build it. Using this outputted path in the model, the script reads it and plays it back

to the user using a GUI built in pygame for Python [48].

In order to faithfully represent the lane change operations the driver performs, an

additional table is obtained using the steering control abstraction, which corresponds

49

to the interpolation of the x and y positions of the vehicle as a function of time (i.e.

x(t) and y(t)). Given the complexity of the y movement compared to the x movement,

the positions are represented by a 6th and 2nd degree polynomial, respectively.

Due to the size of the example, only one test case is presented of a simulation of a

path in a model. In Figure 3.7, an example of several frames of the simulation of a

path in the scenario (dtype, v, v1, x1,0) = (3, 28, 21, 38) is presented. In this case, the

driver initiates a lane change to perform an overtake at the 2s mark and returns to

the original lane at the 8s mark, with no crashing occurring. In the simulation, the

vehicle took 18.3s to reach the end of the road. It should be noted that, as verified by

the conditional liveness property, the vehicle took less than 24s to reach the end of

the road segment. While it would appear the vehicle took less than 19s to reach the

end (and thus would violate the probability of 0 obtained for this liveness property),

the model considers steps of 1s, so in the model, the vehicle actually took 19s to

finish instead of 18.3s.

50

Figure 3.7 Snapshots of the simulator for one of the paths in the scenario
(dtype, v, v1, x1,0) = (3, 28, 21, 38).

51

Chapter 4

Advanced Driver Assistance
Systems

This chapter explores and compares several ideas for assistance systems which can

be implemented on top of the human driver model generated in the previous one. It

starts by tackling the design of the system in terms of the placement in the existing

module based model and the capabilities within it, following an incremental approach

(considering the limitations of the vehicle and drivers). It then performs a comparison

of the different approaches using two distinct test cases and it concludes which ADAS

performs the best (within reasonable assumptions). This solution is then evaluated

and compared to the human driver in Chapter 5.

4.1 Driver Assistance System Design

One of the aims of this dissertation is to obtain correct-by-construction driver assis-

tance systems. As such, the design of the assistance system in this context corresponds

mostly to determining which actions are available to the system at each state (the

model becomes an MDP), and then performing synthesis using adequate properties.

It should be noted that these actions must be realistic in nature, otherwise the ob-

tained assistance system would prove to be useless in a real-world scenario - and

usefulness is the end goal in terms of deployment. Figure 4.1 presents the underlying

assumptions of where the system would lie in the environment, which influences the

possibilities in terms of the design.

52

Decision Making +
Monitoring Control Assistance System

(active control)

Physical Vehicle

Assistance System
(passive suggestions)

influences

Human Driver

v,a (v + Δvas),(a + Δaas)

information flow

sequential flow

Figure 4.1 Overview of the system with the possibilities of the ADAS interven-
tion.

It is assumed that the assistance system can not change the decision making (as it

is a human cognitive process), but it can influence it to a certain degree through

suggestion. This would be the ideal way of implementing the ADAS, as it would not

require any intervention in the physical systems of the vehicle. Therefore, the first

possibilities explored are based on this option. However, in the interest of safety and

efficiency, incremental control based options are also developed, both at the level of

linear acceleration (influencing a through ∆aas), as well as at the level of steering

control (by influencing v and a through ∆vas and ∆aas, respectively).

4.1.1 Decision Making-based ADAS

4.1.1.1 Decision Making with Fully Compliant Drivers

At the decision making level, the human driver model considered has two options: it

either changes lanes, or it does not. These options can be influenced using suggestions

(e.g. through visual or auditive cues) which can lead to either one or the other being

taken. Salvucci in [26] does not consider accelerating and decelerating as part of

the decision making because he argues they happen instinctively and therefore they

should be exclusively part of the control. However, if a driver can be influenced to

make a conscious decision to decelerate, for example, through the driver assistance

system, then there is an argument for including this action in the decision making.

Thus, a 3-option ADAS was designed, where an action α is defined as:

53

α ∈ A := {(lc) ∨ (¬lc ∧ a = ap) ∨ (¬lc ∧ a = ad)} (4.1)

where lc corresponds to the decision to perform a lane change, a is the acceleration

in the next state, ap is the acceleration the vehicle is currently holding and ad is a

constant value for deceleration that a driver applies when suggested to decelerate. In

this dissertation, it was assumed that ad = −1 (minimum decelerating value).

Considering that the drivers are fully compliant with the suggestions given by the

system, the decision making at each step can be replaced by the all the possible

actions, obtaining an MDP with three choices at this level. The code presented in

Appendix B.1.1 corresponds to the implementation of a generator for this ADAS.

4.1.1.2 Decision Making with Partially Compliant Drivers

In the case of the ADAS previously designed, it is assumed that humans will not only

follow all the suggestions, but they will comply with them fully and immediately after

they are received (within the same ACT-R cycle in the decision making). However,

this is not a realistic assumption by any means. In fact, people are more prone

to following suggestions when these align with their original intent, than otherwise.

With this in mind, a new solution is presented which more accurately represents the

suggestive decision making considered in this section.

In the human driver model, a single action was available for a set of conditions, such

that at any decision making state (actr state = 2) s there would be a value p such

that the next state s′ could be written as:

s′ = p : (lC) + (1− p) : (¬lC & a = ap) (4.2)

Consider a factor γ ∈ [0, 1] which corresponds to how responsive a driver is to the

suggestions given. The following rule can be written for each of the actions αi ∈ A
of the MDP according to the states s′i which they lead to:

s′i = γ : αi + (1− γ) · p : (lC) + (1− γ) · (1− p) : (¬lC & a = ap) (4.3)

54

Given that γ, p ∈ [0, 1], the transitions are guaranteed to sum up to one for every

case. The decision making with fully compliant drivers corresponds to the case where

γ = 1. The code presented in Appendix B.1.2 corresponds to the implementation of

a generator for this particular ADAS.

4.1.2 Control-based ADAS

While the decision making under the assumption of fully compliant drivers appears

to be a powerful option in terms of safety and liveness, the weakening of the assump-

tion to partially compliant drivers is expected to reduce performance substantially,

particularly for lower values of γ. As such, control based assistance is added on top

of the decision making assistance considered for partially compliant drivers, so as to

improve performance. It should be noted that this type of assistance does not require

human intervention, as per the assumptions noted in Figure 4.1.

4.1.2.1 Active Linear Acceleration Control

Considering the assumptions previously described, active linear acceleration control

consists in an incremental addition to the acceleration value proposed by the human in

the control module. Assume the acceleration of the vehicle imposed by the human is

given in the model by a ∈ {amin, ..., amax}. In this module, a value ∆aas is considered

such that:

∆aas ∈ {∆amin
as , ...,∆a

min
as } : ∆amin

as > amin ∧∆amax
as < amax (4.4)

and the final acceleration applied to the vehicle becomes (considering as well that

a′ ∈ {amin, ..., amax}):

a′(t) = max(min(a(t) + ∆aas, a
max), amin) (4.5)

The restriction to the values of ∆aas presented in Equation 4.4 allows the system

to be incremental (i.e. corrective) instead of enforcing the specific values chosen by

the control assistance system. This is important to avoid strategies for the control

assistance system which sharply contrast in terms of the values chosen, e.g. a strategy

55

which at a certain time chooses an acceleration of 3 and in the next time step chooses

one of −2 (not allowed for a small enough range of ∆aas and according to the linear

control abstraction obtained in Chapter 3). In this dissertation, it is assumed that

∆aas ∈ {−1, 0, 1}.

The implementation of such a system consists in replacing the existing linear control

at each step of the control module by the resulting accelerations of applying all the

possible values of ∆aas to the acceleration decided by the human control module,

obtaining an MDP with at most three actions at the linear acceleration control level

(and at least two). The code presented in Appendix B.1.3 corresponds to the im-

plementation of a generator for this ADAS (with the decision making assistance for

partially compliant drivers).

4.1.2.2 Active Steering Control

While linear acceleration control assistance improves safety and liveness, steering

assistance can also be improved using incremental velocity and acceleration.

In [26], Salvucci introduces a control law for the steering angle ϕ, as presented in

Section 2.2, for a given kfar, knear and kI . By changing the values of these constants,

different control laws are obtained, which introduce different accelerations and veloc-

ities at each time step, mimicking the behaviour of the incremental control previously

assumed (i.e. within such a strategy, the difference in acceleration and velocity in-

troduced is the difference between these values for the two control laws at each time

step). The value of θmax (as defined in Section 2.2), guarantees the feasibility of the

movement in terms of the acceleration induced. Thus, actions in this assistance sys-

tem at the model level correspond to different sets of (kfar, knear, kI) available to the

ADAS.

In this dissertation, three distinct sets of parameters were considered as possible

actions, (kfar, knear, kI) ∈ {(15, 3, 5), (17, 3, 6), (14.5, 3, 7)}. An example of the simu-

lation for the situation where olane = 1, d = 20m, v = 15m/s and v1 = 15m/s (with

the non-probabilistic control) is presented in Figure 4.2.

Using these values, new look-up tables were obtained with the probability of crashing,

the ∆x and ∆T incurred and the final velocity of the vehicle in question (following the

probabilistic control module presented in Section 3.2.3) for each origin lane, distance

56

0 20 40 60 80 100 120

x [m]

0

1

2

3

4

5

6

7
y

[m
]

(15, 3, 5)

(17, 3, 6)

(14.5, 3, 7)

Lead Vehicle

Figure 4.2 Example of the simulation of the lane change for olane = 1 (right
lane), d = 20m, v = 15m/s and v1 = 15m/s (the legend of each
path corresponds to the situation with parameters kfar, knear, kI , re-
spectively).

to the other vehicle, velocities of both the vehicle in question and the other vehicle and

the parameters of the control law (out of the three possibilities presented). Following

the same calculations as shown in Section 3.2.1, the obtained look-up table contains

103, 200 rows.

In terms of implementation, the MDP is obtained through simply reading the three

possible actions for lane changing directly from the look-up table, similarly to the

human driver model (the difference being the latter only has one option). The code

presented in Appendix B.1.4 corresponds to the implementation of a generator for

this ADAS (with the decision making assistance for partially compliant drivers and

active linear acceleration control).

57

4.2 Design Evaluation

While it would appear to be the case that an ADAS with both decision making and

control assistance at the linear acceleration and steering level would be the optimal

choice for the driver assistance system, there are no guarantees that this is true. As

such, an evaluation and comparison of all the possible designs must be performed in

order to determine the best option which can then be compared to the human driver

model in Chapter 5. To do so, it is necessary to establish multi-objective metrics and

some meaningful test cases (as testing all the options would be infeasible).

4.2.1 Multi-Objective Metrics

As established in Section 3.3, safety and liveness are two important metrics which will

be used in Chapter 5 to evaluate the human driver model. Therefore, it makes sense

that such properties should be the focus of the synthesis for the driver assistance

system. The goal is to minimise the probability of crashing and to maximise the

liveness property. This can be obtained using a multi-objective query such as the one

below:

multi(Pmin=? [F crashed], Pmax=? [F (x=length) & (t<T)])

for a given constant T . Due to the trade-offs between both properties, the model

checking of the multi-objective property of the format of the above generates a Pareto

curve, where each point on the curve corresponds to optimal achievable values in terms

of P=? [F crashed] and P=? [F (x=500) & (t<T)] under a given strategy. As

such, it is possible to compare strategies through the comparison of the Pareto curves

obtained for the different ADAS for some test cases.

However, the problem of the safety bias discussed in Section 3.3.3 persists through this

comparison, and the ideal metric would take into account the conditional probability

instead of the unconditional one. Since PRISM does not allow for the model checking

of conditional properties, the Pareto curve using the conditional properties needs to

be obtained in a different way. At this point, it is important to notice the following

equality for a given strategy σ in the MDP:

58

P σ
s (F crashed) = 1− P σ

s (F x=length) (4.6)

as long as pmax,s(F (crashed | x = length)) = pmin,s(F (crashed | x = length)) =

1 (completeness property for the MDP). This is true from the fact that the events

crashing and reaching the end are mutually exclusive. Thus, it is possible to write:

P σ
s (F (x=length) & (t<T) | F x=length) =

P σ
s (F (x=length) & (t<T))

P σ
s (F x=length)

=
P σ
s (F (x=length) & (t<T))

1− P σ
s (F crashed)

(4.7)

It is therefore possible to obtain the Pareto curve with the conditional properties by

using Equation 4.7 on each of the points in the unconditional curve (generating the

achievable set through this).

4.2.2 Test Cases

Due to the infeasibility of generating all the possible combinations of test cases, two

test cases were considered when comparing the four different ADAS designed in the

previous section: the first test case in the scenario (v, v1, x1,0) = (21, 19, 70) and the

second in the scenario (v, v1, x1,0) = (30, 22, 50). For each of these test cases, the

unconditional and conditional Pareto curves for each driver type are presented for a

T representative of the scenario and which allows for comparison between the ADAS

considered, with Figures 4.3 and 4.4 referring to the first test case, and Figures 4.5

and 4.6 referring to the second test case. In terms of parameters of the model, the

same values were used as in the human driver model part of the implementation, and

γ was set to 0.1.

59

−0.05 0.00 0.05
P=? [F crashed]

0.950

0.975

1.000

1.025

1.050

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)]

a. (1)

0.29 0.30 0.31
P=? [F crashed]

0.50

0.52

0.54

0.56

0.58

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)]

b. (2) - Aggressive drivers

0.12 0.14
P=? [F crashed]

0.400

0.425

0.450

0.475
P

=
?

[F
(x

=
50

0)
&

(t
<

20
)]

c. (2) - Average drivers

0.04 0.05 0.06
P=? [F crashed]

0.16

0.18

0.20

0.22

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)]

d. (2) - Cautious drivers

0.16 0.18 0.20
P=? [F crashed]

0.3

0.4

0.5

0.6

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)]

e. (3) - Aggressive drivers

0.04 0.05 0.06 0.07 0.08
P=? [F crashed]

0.2

0.3

0.4

0.5

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)]

f. (3) - Average drivers

0.02 0.04 0.06
P=? [F crashed]

0.1

0.2

0.3

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)]

g. (3) - Cautious drivers

0.12 0.14 0.16
P=? [F crashed]

0.65

0.70

0.75

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)]

h. (4) - Aggressive drivers

0.03 0.04 0.05
P=? [F crashed]

0.4

0.5

0.6

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)]

i. (4) - Average drivers

0.005 0.010 0.015
P=? [F crashed]

0.2

0.3

0.4

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)]

j. (4) - Cautious drivers

Figure 4.3 Pareto curves of the unconditional properties for the scenario v =
21m/s, v1 = 19m/s, x1,0 = 70m and for T = 20. The ADAS
are represented using the following numbering: (1) decision making-
based with fully compliant drivers, (2) decision making-based with
partially compliant drivers, (3) decision making with partially com-
pliant drivers + active linear acceleration control, and (4) decision
making with partially compliant drivers + active linear acceleration
control + active steering control.

60

−0.05 0.00 0.05
P=? [F crashed]

0.950

0.975

1.000

1.025

1.050

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)
||

F
(x

=
50

0)
]

a. (1)

0.29 0.30 0.31
P=? [F crashed]

0.70

0.75

0.80

0.85

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)
||

F
(x

=
50

0)
]

b. (2) - Aggressive drivers

0.12 0.14
P=? [F crashed]

0.45

0.50

0.55
P

=
?

[F
(x

=
50

0)
&

(t
<

20
)
||

F
(x

=
50

0)
]

c. (2) - Average drivers

0.04 0.05 0.06
P=? [F crashed]

0.16

0.18

0.20

0.22

0.24

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)
||

F
(x

=
50

0)
]

d. (2) - Cautious drivers

0.16 0.18 0.20
P=? [F crashed]

0.4

0.6

0.8

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)
||

F
(x

=
50

0)
]

e. (3) - Aggressive drivers

0.04 0.05 0.06 0.07 0.08
P=? [F crashed]

0.2

0.4

0.6

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)
||

F
(x

=
50

0)
]

f. (3) - Average drivers

0.02 0.04 0.06
P=? [F crashed]

0.1

0.2

0.3

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)
||

F
(x

=
50

0)
]

g. (3) - Cautious drivers

0.12 0.14 0.16
P=? [F crashed]

0.75

0.80

0.85

0.90

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)
||

F
(x

=
50

0)
]

h. (4) - Aggressive drivers

0.03 0.04 0.05
P=? [F crashed]

0.4

0.5

0.6

0.7

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)
||

F
(x

=
50

0)
]

i. (4) - Average drivers

0.005 0.010 0.015
P=? [F crashed]

0.2

0.3

0.4

P
=

?
[F

(x
=

50
0)

&
(t
<

20
)
||

F
(x

=
50

0)
]

j. (4) - Cautious drivers

Figure 4.4 Pareto curves of the conditional properties for the scenario v =
21m/s, v1 = 19m/s, x1,0 = 70m and for T = 20. The ADAS
are represented using the following numbering: (1) decision making-
based with fully compliant drivers, (2) decision making-based with
partially compliant drivers, (3) decision making with partially com-
pliant drivers + active linear acceleration control, and (4) decision
making with partially compliant drivers + active linear acceleration
control + active steering control.

61

−0.05 0.00 0.05
P=? [F crashed]

0.950

0.975

1.000

1.025

1.050

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)]

a. (1)

0.2942 0.2943 0.2944 0.2945
P=? [F crashed]

0.69475

0.69480

0.69485

0.69490

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)]

b. (2) - Aggressive drivers

0.1420 0.1422 0.1424
P=? [F crashed]

0.726

0.728

0.730
P

=
?

[F
(x

=
50

0)
&

(t
<

19
)]

c. (2) - Average drivers

0.08 0.09
P=? [F crashed]

0.47

0.48

0.49

0.50

0.51

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)]

d. (2) - Cautious drivers

0.2130 0.2132 0.2134
P=? [F crashed]

0.7785

0.7790

0.7795

0.7800

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)]

e. (3) - Aggressive drivers

0.08275 0.08300 0.08325 0.08350
P=? [F crashed]

0.80

0.82

0.84

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)]

f. (3) - Average drivers

0.035 0.040 0.045 0.050
P=? [F crashed]

0.525

0.550

0.575

0.600

0.625

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)]

g. (3) - Cautious drivers

0.140 0.145 0.150
P=? [F crashed]

0.82

0.84

0.86

0.88

0.90

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)]

h. (4) - Aggressive drivers

0.046 0.048 0.050
P=? [F crashed]

0.900

0.925

0.950

0.975

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)]

i. (4) - Average drivers

0.020 0.025 0.030 0.035
P=? [F crashed]

0.82

0.84

0.86

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)]

j. (4) - Cautious drivers

Figure 4.5 Pareto curves of the unconditional properties for the scenario v =
30m/s, v1 = 22m/s, x1,0 = 50m and for T = 19. The ADAS
are represented using the following numbering: (1) decision making-
based with fully compliant drivers, (2) decision making-based with
partially compliant drivers, (3) decision making with partially com-
pliant drivers + active linear acceleration control, and (4) decision
making with partially compliant drivers + active linear acceleration
control + active steering control.

62

−0.05 0.00 0.05
P=? [F crashed]

0.950

0.975

1.000

1.025

1.050

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)
||

F
(x

=
50

0)
]

a. (1)

0.2942 0.2943 0.2944 0.2945
P=? [F crashed]

0.9844

0.9846

0.9848

0.9850

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)
||

F
(x

=
50

0)
]

b. (2) - Aggressive drivers

0.1420 0.1422 0.1424
P=? [F crashed]

0.846

0.848

0.850

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)
||

F
(x

=
50

0)
]

c. (2) - Average drivers

0.08 0.09
P=? [F crashed]

0.52

0.54

0.56

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)
||

F
(x

=
50

0)
]

d. (2) - Cautious drivers

0.2130 0.2132 0.2134
P=? [F crashed]

0.989

0.990

0.991

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)
||

F
(x

=
50

0)
]

e. (3) - Aggressive drivers

0.08275 0.08300 0.08325 0.08350
P=? [F crashed]

0.86

0.88

0.90

0.92

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)
||

F
(x

=
50

0)
]

f. (3) - Average drivers

0.035 0.040 0.045 0.050
P=? [F crashed]

0.55

0.60

0.65

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)
||

F
(x

=
50

0)
]

g. (3) - Cautious drivers

0.140 0.145 0.150
P=? [F crashed]

0.950

0.975

1.000

1.025

1.050

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)
||

F
(x

=
50

0)
]

h. (4) - Aggressive drivers

0.046 0.048 0.050
P=? [F crashed]

0.950

0.975

1.000

1.025

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)
||

F
(x

=
50

0)
]

i. (4) - Average drivers

0.020 0.025 0.030 0.035
P=? [F crashed]

0.82

0.84

0.86

0.88

P
=

?
[F

(x
=

50
0)

&
(t
<

19
)
||

F
(x

=
50

0)
]

j. (4) - Cautious drivers

Figure 4.6 Pareto curves of the conditional properties for the scenario v =
30m/s, v1 = 22m/s, x1,0 = 50m and for T = 19. The ADAS
are represented using the following numbering: (1) decision making-
based with fully compliant drivers, (2) decision making-based with
partially compliant drivers, (3) decision making with partially com-
pliant drivers + active linear acceleration control, and (4) decision
making with partially compliant drivers + active linear acceleration
control + active steering control.

63

4.2.3 Overall Comparison

From the Pareto curves presented, it is noticeable that the best performing ADAS is

the first presented, that is, a decision making assistance system with the assumption

of fully compliant drivers. This assistance system allows maximum safety (P=? [F

crashed] = 0) and efficiency (P=? [F (x=500) & (t<T)] = 1) for both test cases

and respective values of T considered. However, as discussed before, this situation is

unrealistic in nature. By adding the partial compliance assumption, the performance

drops drastically, leading to fairly high probabilities of crashing in aggressive drivers

(minimum of 0.285 for the first test case and 0.294 for the second one) and lower live-

ness performance as well. By introducing linear acceleration control, safety increases

significantly (the probability of crashing is lowered), but the increase of the probabil-

ity of the liveness property being satisfied is almost negligible in some situations (and

it decreases in some cases; e.g. the aggressive drivers in the first test case). In all

the cases tested, the introduction of steering control improves, in both cases and for

all driver classes, both safety and liveness. Therefore, the assistance system number

4, that is, decision making with partially compliant drivers, active linear acceleration

control and active steering control is the best performing system in the two test cases

presented (other than number 1, which is based on unrealistic assumptions).

This analysis does not provide a statistical guarantee that this is the best perform-

ing ADAS out of the ones tested in the majority of the situations (as this would be

too time consuming for the time frame of this dissertation). However, the systems

considered are incremental in nature, in the sense that they were built through iter-

ation and by adding more actions to the one immediately before. As such, number 4

was expected for perform better than numbers 2 and 3, simply due to the fact that

there were more choices available to it. The two test cases presented corroborate this

idea. Therefore, it can be concluded that the assistance system number 4 would be

the most complete and better candidate for deployment, and, as such, the in-depth

experimental results and discussion presented in Chapter 5 use this ADAS.

64

Chapter 5

Experimental Results

In this chapter, the performance of the driver assistance system is evaluated by com-

paring the value of quantitative properties in the human driver model obtained in

Chapter 3 to similar properties in the model of the human driver with the ADAS

designed in Chapter 4 (decision making with partially compliant drivers and with

active linear acceleration and steering control). This is achieved using the various

metrics defined throughout the dissertation, through random test cases of initial con-

ditions and further comparison using a randomly generated sample population. After

a discussion of the main results, some demonstrations of possible extensions regard-

ing different properties outside the scope of the performance evaluation and scenarios

with more vehicles are presented.

5.1 Performance Evaluation of ADAS

The first step towards the comparison between the human driver model and the full

system (human driver with the ADAS designed) lies in the building of the model and,

as such, it is only natural that the evaluation should start by comparing the state

space and building time of each of the two models.

5.1.1 State Space and Building Time Results

A scenario, in both cases, can be uniquely defined as a tuple (dtype, v, v1, x1,0), where

dtype ∈ {1, 2, 3} is the driver class considered (aggressive, average or cautious, respec-

65

tively). In practice, this means that, for a road segment of 500m and considering

v, v1 ∈ {15, ..., 34} and x1,0 ∈ {1, ..., 500}, there are 20 × 20 × 500 × 3 = 600, 000

different scenarios to consider. Assuming that the building time of each of those

scenarios for both the human driver model and the full system is 5 minutes in total,

this task of building all the possible scenarios would take approximately 2, 083 days

to complete. Given the time frame of this dissertation, this would be infeasible. As

such, a sample population of 10 random scenarios was generated and the results in

terms of the number of states (#S), the number of transitions (#T) of the built model

and time, in seconds, (t [s]) it took to build the model1 are presented in Table 5.1.

dtype v v1 x1,0
Human Human and ADAS

#S #T t [s] #S #T t [s]

1 34 18 78 106 119 2.479 12,213 26,743 309.949

1 31 31 52 227 251 4.064 103,531 360,505 269.900

2 22 18 64 358 399 5.327 401,632 1,231,288 282.307

3 28 25 58 334 399 4.695 209,143 710,168 277.272

1 24 24 84 278 316 4.264 320,088 1,055,570 281.231

3 21 19 68 364 426 5.262 448,145 1,414,788 290.160

2 24 17 52 215 238 3.623 225,095 650,096 297.895

3 29 29 66 212 237 4.025 153,464 530,137 279.170

2 25 17 44 153 168 3.276 63,403 156,201 302.744

2 31 20 40 85 94 2.559 22,135 50,746 267.165

Table 5.1 Result of the state space and build time for 10 test cases.

As expected, the state space is considerably larger in the full system than in the

human driver model alone. However, the time for model construction in both cases

is larger than expected for models of such dimensions, particularly when compared

to other similar results in [25]. For a similarly obtained randomly generated sample

of 100 test cases, the average build time for the human model was 3.861s and in the

case of the full system this value was 283.256s.

1The models were built using a Macbook Pro with a 2,6 GHz Intel Core i7 (quad core). The
human model results were obtained using Storm’s sparse engine, while the full system results were
obtained using PRISM’s hybrid engine.

66

5.1.2 Safety Results

As initially described in Chapter 3, the safety property for the human driver model

can be written as:

P=? [F crashed]

A similar safety property is presented in Chapter 4, adapted for the fact that the

model of the human driver and driver assistance system is an MDP instead of a

DTMC:

Pmin=? [F crashed]

These properties are directly comparable, as they represent the same quantitative

value (this is not the case with the liveness properties). It should be noted that

the lower the value of this property, the safer the system is. This means that these

properties can be used not only for comparisons between the human driver alone and

the full system (human and driver assistance system) for a given scenario, but also

for inter-situational comparisons (i.e. with different initial conditions).

As explained in Section 5.1.1, it would be infeasible to obtain the results of model

checking the safety property in all the possible scenarios. As such, three other methods

where designed as a way to compare both systems:

• Main vehicle initial velocity test cases: for two randomly selected tuples

(v1, x1,0), the variation of the value of the safety properties for each driver profile

with the variation of v were obtained. This directly compares 20 different

scenarios for each driver class. The two tuples were randomly generated as

(v1, x1,0) = (20, 35) and (v1, x1,0) = (22, 40), and the results are presented in

Figures 5.1 and 5.2, respectively.

• Bivariant initial velocity test cases: for a randomly selected x1,0, the varia-

tion of the values of the safety properties for each driver profile with the change

of v and v1 (within certain ranges; v ∈ {20, ..., 30} and v1 ∈ {15, ..., 25}) were

generated. This directly compares 120 different scenarios for each driver class.

The value x1,0 = 50 was randomly generated for this test case, and the results

are presented in Figure 5.3.

67

• Box plots: for a randomly generated sample of 100 different initial conditions

of (v, v1, x1,0), a box plot which represents the distribution of the values of the

safety properties for this sample and for each driver profile was obtained. The

results are shown in Figure 5.4.

14 16 18 20 22 24 26 28 30 32 34
v [m/s]

0.00

0.25

0.50

0.75

1.00

P
=

?
[F

cr
as

h
ed

]

Aggressive

Average

Cautious

a. Human driver model

14 16 18 20 22 24 26 28 30 32 34
v [m/s]

0.00

0.25

0.50

0.75

1.00

P
m
in

=
?

[F
cr

as
h

ed
]

Aggressive

Average

Cautious

b. ADAS

Figure 5.1 Plots of the variation of the value of the safety property with the
initial velocity of the main vehicle for the conditions v1 = 20m/s
and x1,0 = 35m.

14 16 18 20 22 24 26 28 30 32 34
v [m/s]

0.0

0.2

0.4

0.6

0.8

P
=

?
[F

cr
as

h
ed

]

Aggressive

Average

Cautious

a. Human driver model

14 16 18 20 22 24 26 28 30 32 34
v [m/s]

0.0

0.2

0.4

P
m
in

=
?

[F
cr

as
h

ed
]

Aggressive

Average

Cautious

b. ADAS

Figure 5.2 Plots of the variation of the value of the safety property with the
initial velocity of the main vehicle for the conditions v1 = 22m/s
and x1,0 = 40m.

68

v [m
/s]

20
22

24
26

28
30

v1 [m/s] 16
18

20
22

24

P
=

?
[F

crash
ed

]
or

P
m

in
=

?
[F

crash
ed

]

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Human Driver

ADAS

a. Aggressive drivers

v [m
/s]

20
22

24
26

28
30

v1 [m/s] 16
18

20
22

24

P
=

?
[F

crash
ed

]
or

P
m

in
=

?
[F

crash
ed

]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Human Driver

ADAS

b. Average drivers

v [m
/s]

20
22

24
26

28
30

v1 [m/s] 16
18

20
22

24

P
=

?
[F

crash
ed

]
or

P
m

in
=

?
[F

crash
ed

]

0.1

0.2

0.3

0.4

0.5

0.6

Human Driver

ADAS

c. Cautious drivers

Figure 5.3 Variation of the value of the safety properties with the initial veloc-
ities of both vehicles for x1,0 = 50m.

69

Aggressive Average Cautious
0.00

0.25

0.50

0.75

1.00

P
=

?
[F

cr
as

h
ed

]

a. Human driver model

Aggressive Average Cautious
0.00

0.25

0.50

0.75

1.00

P
m
in

=
?

[F
cr

as
h

ed
]

b. ADAS

Figure 5.4 Box plot of the value of the safety properties for a randomly sampled
population of 100 different initial conditions (equal in both cases).

5.1.3 Liveness Results

As introduced in Chapter 3, there are multiple liveness properties that can be consid-

ered when evaluating the human driver model. However, the most appropriate ones

for inter-situational comparisons are the conditional properties of the type:

P=? [F (x=length) & (t<T) || F (x=length)]

for a given constant T .

In the case of the full system (human driver and ADAS), the model becomes an MDP

and, as mentioned in Chapter 2, conditional properties are not so easily calculated

in MDPs due to the existence of multiple adversaries. Despite this, it is possible

to reason over lower bounds of these types of properties under the conditions of

Proposition 2.3.1. For the PCTL formulas ϕ1 = F (x=length) & (t<T) and ϕ2 =

F (x=length), it is trivial that for any path π ∈ Paths(s): π |= ϕ1 ⇒ π |= ϕ2.

Furthermore, it can also be assumed that for:

σ′ ∈ arg sup
σ∈Adv

P σ
s (ϕ1 || ϕ2) (5.1)

it is true that:

70

P σ′

s (ϕ1) = pmax,s(ϕ1) (5.2)

since intuitively the interest is in adversaries which maximise the conditional property

through the maximisation of the probability of eventually reaching (x=length) &

(t<T) (as this is the comparable case in the human driver model). Thus, under the

conditions of Proposition 2.3.1, it is possible to write:

pmax,s(F (x=length) & (t<T) || F (x=length)) ≥ pmax,s(F (x=length) & (t<T))

pmax,s(F (x=length))
(5.3)

Therefore, a lower bound on the conditional probability, ζ(T), can be obtained using

the quantitative properties:

ζ(T) =
Pmax=? [F (x=length) & (t<T)]

Pmax=? [F (x=length)]
(5.4)

At this point it should also be noted that (as described in Section 4.2.1):

pmax,s(F x=length) = 1− pmin,s(F crashed) (5.5)

so long as pmax,s(F (crashed | x = length)) = pmin,s(F (crashed | x = length)) =

1 (completeness property for the MDP). Therefore, ζ can be re-written as:

ζ(T) =
Pmax=? [F (x=length) & (t<T)]

1− Pmin=? [F crashed]
(5.6)

Once more, model checking the entire space of possible initial conditions would be

infeasible given the time frame of this dissertation. Similarly to the safety properties,

two methods were designed to compare both systems at the liveness level:

• Temporal variation of liveness: for two randomly selected tuples (v, v1, x1,0),

the value of all the pertinent liveness properties (T ∈ {16, ..., 28}) was ob-

tained. The two tuples were randomly generated as (v, v1, x1,0) = (21, 19, 70)

71

and (v, v1, x1,0) = (26, 22, 46), and the results are presented in Figures 5.5 and

5.6, respectively.

• Box plots: for a randomly generated sample of 100 different initial conditions

of (v, v1, x1,0), obtain box plot which represents the distribution of the values

of two liveness properties using appropriate values of T (given the sample) for

this sample and for each driver profile. After the sample was generated, it was

determined that T = 21 and T = 22 were representative values (in the sense

that they are great enough to avoid a significant portion of the values of both

properties being 0, and not so large that a significant portion of the values for

all scenarios are 1; these situations would make it impossible to compare the

human and the full system). The results are presented in Figures 5.7 and 5.8

for T = 21 and T = 22, respectively.

72

15 17 19 21 23 25 27
T [s]

0.00

0.25

0.50

0.75

1.00

P
=

?
[F

(x
=

50
0)

&
(t
<

T
)
||

F
(x

=
50

0)
]

Aggressive

Average

Cautious

a. Human driver model

15 17 19 21 23 25 27
T [s]

0.00

0.25

0.50

0.75

1.00

ζ
(T

)

Aggressive

Average

Cautious

b. ADAS

Figure 5.5 Plots of the variation of the value of the liveness properties with the
value of T (in s) for the initial conditions v = 21m/s, v1 = 19m/s
and x1,0 = 70m.

15 17 19 21 23 25 27
T [s]

0.00

0.25

0.50

0.75

1.00

P
=

?
[F

(x
=

50
0)

&
(t
<

T
)
||

F
(x

=
50

0)
]

Aggressive

Average

Cautious

a. Human driver model

15 17 19 21 23 25 27
T [s]

0.00

0.25

0.50

0.75

1.00

ζ
(T

)

Aggressive

Average

Cautious

b. ADAS

Figure 5.6 Plots of the variation of the value of the liveness properties with the
value of T (in s) for the initial conditions v = 26m/s, v1 = 22m/s
and x1,0 = 46m.

73

Aggressive Average Cautious
0.00

0.25

0.50

0.75

1.00

P
=

?
[F

(x
=

50
0)

&
(t
<

21
)
||

F
(x

=
50

0)
]

a. Human driver model

Aggressive Average Cautious
0.00

0.25

0.50

0.75

1.00

ζ
(2

1)
b. ADAS

Figure 5.7 Box plot of the value of the liveness properties for T = 21s for
a randomly sampled population of 100 different initial conditions
(equal in both cases).

Aggressive Average Cautious
0.00

0.25

0.50

0.75

1.00

P
=

?
[F

(x
=

50
0)

&
(t
<

22
)
||

F
(x

=
50

0)
]

a. Human driver model

Aggressive Average Cautious
0.00

0.25

0.50

0.75

1.00

ζ
(2

2)

b. ADAS

Figure 5.8 Box plot of the value of the liveness properties for T = 22s for
a randomly sampled population of 100 different initial conditions
(equal in both cases).

74

5.1.4 Discussion

The discussion of the results presented in Sections 5.1.2 and 5.1.3 is threefold in

nature. Firstly, the comparison between the different driver profiles within each of

the individual systems (i.e. human driver model and the human and ADAS system)

is presented. Secondly, the results of the experiments of the human driver alone and

the full system in both safety and liveness are discussed and compared (within the

same driver class). Finally, an overall discussion is presented on the extent of the

validity of such comparisons through the drawbacks of the metrics used.

With respect to the individual driver classes presented in both the human driver

model and the human and ADAS system, the results overwhelmingly support the

initial idea that aggressive drivers perform the worse in terms of the safety metrics,

followed by average drivers and finally cautious ones. While this is observable in the

individual test cases (Figures 5.1 and 5.2), Figure 5.4 firmly supports this conclusion

within both systems. In terms of liveness, the reverse is true, with aggressive drivers

outperforming average drivers who in turn outperform cautious drivers. Once more,

while individual test cases support this result (Figures 5.5 and 5.6), Figures 5.7 and 5.8

emphatically reinforce it. Intuitively, this is what was expected from the construction

of the human driver model, and it is still noticeable even using the ADAS designed.

In terms of the comparison between the human driver model and the driver with

the ADAS system, it becomes necessary to interpret the plots while considering the

differences in the metrics used.

In the safety evaluation, as mentioned in Section 5.1.2, the results are directly com-

parable as the metrics are the equivalent of one another for the representation of the

models of both systems (i.e. a DTMC for the human driver model and an MDP for

the human and ADAS system). The most useful comparison in terms of the test cases

in this metric is presented in Figure 5.3, as the 3D plots are divided into the three

categories of drivers considered. It is observable that the introduction of the ADAS

increases safety for all situations considered in this test case (i.e. reduces the value

of the safety property). From the more general overview seen in Figures 5.7 and 5.8,

the same conclusion is drawn for each driver class, with the 25%, 50% (median) and

75% quartiles being lower for the system with the ADAS than those for the human

driver alone.

75

With respect to liveness, the comparison needs to be carefully drawn, as the condi-

tional property in the human driver model alone (DTMC) is not the equivalent of

the metric chosen for liveness in the human and ADAS system (MDP). However, ζ

is proven to be the lower bound of the conditional property in the human and ADAS

system under the conditions presented in Section 5.1.3. From Figures 5.5 and 5.6, it

can be observed that, for each T , the values of ζ are always greater or equal than

those of the conditional property of the human driver model. The same result can

be seen in Figures 5.7 and 5.8 for T = 21 and T = 22, respectively, for the 25% and

75% quartiles. Given that ζ is the lower bound of the maximal conditional property,

it can be concluded that the system with the ADAS outperforms the human driver

alone in this metric.

Despite the results pointing to the improvements in terms of the safety and liveness

properties the ADAS designed brings, they should be taken with care, as there are

drawbacks in the metrics used.

The first drawback has to do with the fact that the comparison in the full system (i.e.

human driver model and ADAS system) deals with minimal and maximal properties

due to the existence of adversaries in MDPs. Thus, the fact that the safety property

is lower in this case than in the human driver model and the liveness properties

are higher, does not mean that there exists a feasible strategy where both safety

and liveness are optimal and outperform the human driver (there might be a trade-

off). This is not the case with the human driver model, where it is known that both

quantitative properties are satisfied simultaneously. In order to evaluate the feasibility

properly, Pareto curves should be generated for each individual scenario and it should

be seen whether there exists a Pareto point where both values outperform the human

driver. This analysis is time consuming with the tools currently available (i.e. PRISM

and Storm) and was therefore infeasible in the time frame of this dissertation.

An additional drawback in terms of the liveness properties in the full system case

is that these are defined as lower bounds which are not proven to be tight. In fact,

in Figure 5.8, while the 25% and 75% quartiles appear to be higher in the case of

the full system than the human driver model, this is not the case with the median,

which is at similar values (or even lower for the class of cautious drivers). From the

rest of the data, it would appear that this value might be the result of the fact that

the lower bound is not tight and might be underestimating the value of the maximal

conditional property for the sample population used. However, this is not certain,

76

and it might also be that the full system is outperformed, in terms of the liveness

properties, by the human driver in certain conditions. The use of the unconditional

liveness properties here would be meaningless, as it would incur in the safety bias

first presented in Section 3.3.3. A solution to this problem would be to develop the

tools to model check conditional properties in MDPs, however, this was outside the

scope of this dissertation and would be highly time consuming.

5.2 Demonstration of Possible Extensions

While outside the scope of the main goal of the dissertation of evaluating safety and

liveness, extensions of the work presented can be obtained fairly easily. They can be

achieved through additional properties that can be used to synthesise strategies for

the ADAS which enforce other types of behaviours, or through minor modifications

of the model to encompass different assumptions.

5.2.1 Left Lane Penalising

When a driver attempts an overtake, they should do so by performing two lane

changes, one from the current lane to the one immediately to the left, and another

one to return to the original lane after it has passed the lead vehicle. The manoeu-

vre should be performed safely, yet as quickly as possible [49]. With this in mind,

properties can be specified to assert such a regulation to the ADAS to guarantee

compliance.

In particular, the property should penalise the usage of the left lane (lane = 2). For

this purpose, the following reward structure was designed:

rewards

[] lane = 1: 0;

[] lane = 2: 1;

endrewards

And the property:

Rmin=? [C]

77

minimises the cumulative value of this reward, and, therefore, the time spent in the

left lane. Thus, the following multi-objective property is introduced:

multi(Pmin=? [F crashed], Rmin=? [C])

To exemplify the use of this reward structure and property, the scenario (dtype, v, v1, x1,0) =

(1, 30, 22, 50) (an aggressive driver with an initial speed of 30m/s and a lead vehicle

at a distance of 50m going at 22m/s) is considered. It should also be noted that

the length of the road segment considered in this case was 400m. By verifying this

property, the Pareto curve obtained is presented in Figure 5.9

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
P=? [F crashed]

1.6

1.8

2.0

2.2

2.4

2.6

R
=

?
[C

]

Figure 5.9 Pareto curve for the model checking of the lane penalising property.

Observing this curve, it is possible to conclude that it is feasible to have R<=1.8 [C],

and thus the following property:

multi(Pmin=? [F crashed], R<=1.8 [C])

yields an adversary which can be used to generate a sample path in the model.

Similarly to what is presented in Section 3.4, a simulator was created to allow for the

visualisation of a path in the model (the code for which is shown in Appendix B.3).

The results of the simulation are presented in Figure 5.10.

78

Figure 5.10 Snapshots of the simulator for one of the paths of the model for
(dtype, v, v1, x1,0) = (1, 30, 22, 50), obtained using the left lane pe-
nalising property.

79

As observed, minimal time is spent in the left lane, with the main vehicle returning

to the right lane as soon as it passes the lead vehicle.

5.2.2 Unsafe by Construction

Until this point, the assumption has been that the goal of the assistance system was

to enforce safety and liveness. However, assume a bad actor has access to the model

and the deployment process used in the vehicle. In such a case, it becomes important

to evaluate the extent of the damage that such an actor could do. Take the same

scenario as above, (dtype, v, v1, x1,0) = (1, 30, 22, 50). Let’s also assume that the bad

actor wants the accident to happen after the the driver has driven between 100 and

200m (for a road segment of 400m). The following property can be considered:

multi(Pmax=? [F crashed], Pmax=? [x <= 100 U (x>100 & x<=200)])

which, when model checked, generates a Pareto curve of the trade-off between max-

imising the probability of crashing and the probability of reaching at least 100m and

at most 200m. The Pareto curve generated is presented in Figure 5.11.

0.30 0.35 0.40 0.45 0.50
P=? [F crashed]

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

P
=

?
[x
<

=
10

0
U

(x
>

10
0

&
x
<

=
20

0)
]

Figure 5.11 Pareto curve for the model checking of the unsafe driving property.

80

By observing the Pareto curve, the following property can be devised:

multi(Pmax=? [F crashed], P>=0.5 [x <= 100 U (x>100 & x<=200)])

This property maximises the probability of crashing, while requiring the vehicle to

drive for at least 100m and at most 200m with probability at least 0.5 before the

crash happens. By model checking this property, the maximum value of P=? [F

crashed] comes out to be 0.5326, and the adversary obtained permits the generation

of paths such as the one presented in the simulator frames in Figure 5.12. It should

be noted that the value of P=? [F crashed] in the human driver model is 0.3935,

and thus the bad actor has successfully increased the probability of crashing.

Figure 5.12 Snapshots of the simulator for one of the paths of the model for
(dtype, v, v1, x1,0) = (1, 30, 22, 50) obtained using the unsafe prop-
erty.

81

5.2.3 Three Vehicle Highway Scenario

So far the scenarios studied have assumed there are only two vehicles on the road: the

main vehicle considered and another lead vehicle. It would be interesting to extend

the current model to a simple three vehicle scenario.

In this case, it was considered that two other vehicles were on the road, each starting

at a certain distance from the main vehicle, x1,0 and x2,0, respectively, and going at a

constant velocity of v1 and v2, respectively, with x1,0 < x2,0 and v1 ≤ v2. A scenario

in this case is thus represented by a tuple (dtype, v, v1, x1,0, v2, x2,0). The model is

obtained by adding a variable, focusV ehicle ∈ {1, 2} which defines which vehicle

is the current focus of attention of the driver. The constant movement of the two

vehicles are simply defined as:

x1(t) = x1,0 + v1 · t
x2(t) = x2,0 + v2 · t

(5.7)

Considering i = focusV ehicle (for conciseness sake), the distance between the two

vehicles can be then obtained as:

d(t) = |x(t)− xi(t)| (5.8)

And the boolean function posDist can be defined as:

posDist(t) =

{
true, if x(t) ≥ xi(t)

false, otherwise.
(5.9)

As soon as the main vehicle overtakes the first vehicle successfully, focusV ehicle

becomes 2 and the formulas switch from the first to the second vehicle.

This constitutes an efficient way of introducing an additional vehicle in the model,

as it is essentially achieved through the use of a single variable and the modifying of

the required formulas. It should be noted that, despite this, the reachable states in

the model will increase as well as the size of the model definition (and, consequently,

the building time of the model) from the need to include more of the lane changing

look-up table (for v1 and v2).

82

Take, as an example, the case (dtype, v, v1, x1,0, v2, x2,0) = (3, 24, 17, 35, 18, 140), that

is, a cautious driver going at 24m/s and two lead vehicles, one starting 35m in front of

the main and going at 17m/s, and the other one starting at 140m and going at 18m/s.

In this scenario, for simulation purposes, it is considered that the length of the road

segment is 400m. Building the model, an MDP with 52, 059 states is obtained. By

verifying the property Pmin=? [F crashed], the value of this property comes out to

be 0.1580 and Pmax=? [F (x=length) & (t<16)] is the property with the lowest T

with a non-zero value, with a value of 0.1193. As such, the following multi-objective

property:

multi(Pmax=? [F x=400 & t < 16], P<=0.158 [F crashed])

generates an adversary which maximises this liveness property while guaranteeing the

minimum possible value for the safety property. The adversary obtained permits the

generation of paths such as the one presented in the simulator frames in Figure 5.13

(for a slightly modified simulator which includes information about the two other

vehicles). It should be noted that, while the simulation continues after 400m, the

model considered has a road segment of length 400m (it continues past this point in

this case because the main vehicle is performing a lane change to overtake the second

vehicle).

83

Figure 5.13 Snapshots of the simulator for one of the paths of the three vehicle
highway model for (dtype, v, v1, x1,0, v2, x2,0) = (3, 24, 17, 35, 18, 140).

84

Chapter 6

Conclusions and Future Work

This dissertation attempted to demonstrate the benefits of using model checking and

synthesis to generate correct-by-construction driver assistance systems through an

application using a cognitive architecture. This required a model of a human driver

in a cognitive architecture to be implemented in PRISM’s modelling language. Since

Salvucci established his driver model in ACT-R in [26], this dissertation focused on

the abstraction process to convert the integrated continuous model into a discrete-

time Markov chain. This was done using pre-simulation and Monte Carlo simulation

techniques, which allowed the generated models to be relatively small in terms of state

space and transitions. Afterwards, several designs were considered in terms of the

capabilities and placement of the driver assistance system within the model. These

options ranged from suggestions at the decision making level to correcting linear or

steering acceleration. They were evaluated carefully, and the best performing one

was then more extensively compared to the human driver model previously obtained.

The results showed a significant performance increase (in terms of the metrics used)

by the introduction of the driver assistance system.

Most of the expected contributions were achieved. The modelling of a complex sce-

nario (a 2-lane highway and the interactions that arise with various profiles of drivers

e.g. follow, crash or overtake another vehicle) through the abstraction of Salvucci’s

human driver model presented in [26] was achieved through the use of efficient pre-

simulation and Monte Carlo simulation techniques and automation of the model writ-

ing which lead to compact models (e.g. in [25], Lam considers a one way road with at

most 270m, and [20] considers similarly simple scenarios through its model assump-

tions). For a road length of 500m, none of the initial conditions considered had a

85

model with more than 700 states, an achievement given the original complexity of

the scenario and the constraints of the ACT-R architecture. The establishment of in-

sightful metrics in terms of safety and liveness and their application to multi-objective

synthesis of possible ADAS was another central achievement of the dissertation (e.g.

in [25], only single-objective safety centric metrics are considered). Furthermore, it

should be noted that, as shown in Chapter 5, the final models (human driver and

ADAS) obtained were also manageable in terms of size - with none exceeding 1 mil-

lion states - an accomplishment as it shows the methodology’s flexibility towards even

more complex models. These two main achievements combined pave the way for the

establishment of a general framework which can be used to tackle similar driving sit-

uations (e.g. intersections, multilane highways with more vehicles or urban driving),

another aim of the dissertation.

Despite the achievements and the contributions of this work, there are several lim-

itations to the methodology introduced. The first limitation is the building time of

the models. While the models built have a relatively small state space, the building

time is quite high for both the human driver model and the full system (human and

ADAS), as shown in Section 5.1.1. This is mostly due to the simulation and the

tables which result out of this process. While these reduce the state space of the final

model, they make the model description quite big (particularly compared to other

similarly sized models found in [25, 20]). The model checking tool, in turn, then takes

quite some time to process the description files, leading to high building times for the

models. Despite this, the time can be reduced by the selection of the right tool and

engine (e.g. the sparse engine in Storm outperforms all the engines PRISM supports

for the human driver model, but PRISM’s hybrid engine outperforms all of Storm’s

engines in the full model).

A second limitation has to do with the tools available. As the reader might have

noticed, the models presented in Section 5.2 were built considering a road segment

of 400m instead of the 500m assumed throughout the rest of the dissertation. This

came from the fact that the adversary generation options in PRISM (-adv or -advmdp)

make use of the LP engine which, as of right now, is not capable of solving a problem

as big as this would have been for the length of 500m (despite the MDP having

under 500, 000 states). Another limitation of the methodology has to do with the

lack of support for the model checking of conditional properties in MDPs in both

PRISM and Storm (despite the latter being able to verify them in DTMCs). While

PRISM does not support the generation of Pareto curves for more than two objectives,

86

PRISM-games - an extension of PRISM to stochastic multi-player games [50] - does

so. However, this tool does not use a symbolic representation of the model and, as

such, is quite limited in terms of the size of the models it supports.

The final limitation presented is related to the underlying assumptions made and

the usefulness of the driver assistance systems generated. There were quite some

assumptions made throughout the dissertation which are not necessarily true. While

the control laws that Salvucci presents in [26] are the result of corrections made to his

original laws presented in [31] through the use of real data he collected, most of the

assumptions used in this dissertations (e.g. driver profiles) are not. As such, while

it is still possible to compare between situations and discuss the advantages of the

driver assistance system, it is questionable to what degree the ADAS synthesised in

the course of this dissertation are actually accurate and useful.

In the future, the model description might be reduced through pre-computation and

elimination of the guards that are never satisfied within the modules, which make

up a significant portion of the file. Furthermore, a data driven approach should be

followed to validate the results obtained and correct the assumptions made about the

drivers. Once the models are accurate according to the real world data, it is possible

to deploy the solutions obtained.

Extensions of this work might include implementations of similar driving situations

using the ideas presented in terms of abstraction and driver assistance in order to val-

idate the approach. A framework to formalise and generalise the process of obtaining

the driver assistance systems can also be the focus of future research in this area.

87

Appendix A

Code for Human Driver Modelling

A.1 ACT-R Implementation (Matlab)

A.1.1 Main Loop

File A.1 act r.m

1 % ACT R − Matlab implementation of Salvucci’s human driver model using the
2 % cognitive architecture ACT−R.
3

4 % Author: Francisco Girbal Eiras , MSc Computer Science
5 % University of Oxford, Department of Computer Science
6 % Email: francisco . eiras@cs .ox.ac.uk
7 % 07−Mar−2018; Last revision: 24−Apr−2018
8

9 %−−−−−−−−−−−−− BEGIN CODE −−−−−−−−−−−−−−
10

11 figure (’pos’ ,[300 300 800 350])
12 g = animatedline(’Color ’ , ’g’ , ’LineWidth’,3) ;
13 h = animatedline(’Color ’ , ’ r ’ , ’LineWidth’,3) ;
14

15 % Draw the separating line
16

17 global delta t length width mem size pMonitor;
18 length = 10000; % 10km
19 width = 7.2;
20 delta t = 1;
21 mem size = 8;
22 pMonitor = 0.8;
23

24 hold on
25 plot ([0, length], [width/2, width/2], ’−−k’);
26 plot ([0, length], [width/4, width/4], ’−−b’);
27 plot ([0, length], [3∗width/4, 3∗width/4], ’−−g’);
28

29 % Draw the car in the other line
30

88

31 axis ([0 length 0 width])
32

33 % Vehicle info
34 x = 0;
35 y = width/4;
36 lane = 1;
37 vx = 15;
38 vy = 0;
39

40 % Obstacles info
41 x1 = 50;
42 y1 = width/4;
43 vx1 = 34;
44 vy1 = 0;
45

46 x2 = 5500;
47 y2 = 3∗width/4;
48

49 vehicles pos = [x1,y1; x2,y2];
50

51 % Memory preparation
52 old theta near = 0;
53 old theta far = 0;
54 old thw car = (x1 − x)/vx;
55

56 % Graph preparation
57 ll = plot(x2, y2, ’sk’ , ’MarkerSize’ , 14, ’MarkerFaceColor’, ’ black ’) ;
58 hold off
59 lh = legend([g h ll], sprintf (’vx = %.2d, vy = %.2f’, vx, vy) , sprintf (’vx = %.2d, vy = %.2f’,

vx1, vy1), ’Time: ’) ;
60

61 changing = false ;
62 t = 0;
63 monitoring memory = zeros(mem size,3);
64

65 while x < length
66

67 [x,y,vx,vy, old theta near , old theta far , old thw car] = control(x,y,vx,vy, lane ,
old theta near , old theta far , old thw car , vehicles pos) ;

68

69 monitoring memory = monitor(monitoring memory,x,vehicles pos)
70

71 [lane , changing] = decision making(lane , old thw car , x, y, monitoring memory, changing,
vehicles pos) ;

72

73 % Other car
74 vehicles pos (1,1) = vehicles pos (1,1) + vx1∗delta t ;
75 vehicles pos (1,2) = vehicles pos (1,2) + vy1∗delta t ;
76

77 % Graphical visualisation
78 addpoints(g,x,y) ;
79 addpoints(h, vehicles pos (1,1) , vehicles pos (1,2)) ;
80

81 set(lh , ’ string ’ , { sprintf (’vx = %.2f, vy = %.2f’, vx, vy) , sprintf (’vx = %.2f, vy = %.2f’
, vx1, vy1), sprintf (’Time: %.0f s’ , t)});

82

83 drawnow
84

85 t = t + delta t ;

89

86 end
87

88 %−−−−−−−−−−−−− END OF CODE −−−−−−−−−−−−−−

A.1.2 Control Module

File A.2 control.m

1 function [x,y,vx,vy, old theta near , old theta far , old thw car] = control(x, y, vx, vy, lane ,
old theta near , old theta far , old thw car , vehicles pos)

2 %CONTROL ACT−R control module
3

4 global delta t length width;
5

6 % Constants
7 k far = 3.0;%15;
8 k near = 0.6;%3;
9 k i = 0.3;%5;

10 theta nmax = 0.07;
11 k car = 0.03;%4;
12 k follow = 0.01;
13 max speed = 34; % approximately 120 km/h
14

15 if lane == 1
16 y follow = width/4;
17 else
18 y follow = 3∗width/4;
19 end
20

21 near point = [x + 4, y follow];
22 far point = [x + 10, y follow];
23

24 theta near = tan((near point(2) − y)/(near point(1) − x));
25 theta far = tan((far point (2) − y)/(far point (1) − x));
26

27 Delta theta near = theta near − old theta near ;
28 Delta theta far = theta far − old theta far ;
29

30 Delta varphi = k far∗ Delta theta far + k near∗Delta theta near + k i∗min(theta near,theta nmax
)∗delta t ;

31

32 % To determine timeheadway, check for vehicles /accidents between the
33 % car position and far point ; the timeheadway corresponds to the
34 % timeheadway to the closest vehicle (or the end of the road)
35

36 min timeheadway = (length + 1000 − x)/vx;
37 for i = 1:size (vehicles pos ,1)
38 if vehicles pos (i ,1) > x && abs(vehicles pos(i ,2) − y) < 0.2
39 th = (vehicles pos (i ,1) − x)/vx;
40 min timeheadway = min(min timeheadway, th);
41 end
42 end
43 time headway = min timeheadway;
44

45 Delta time headway = time headway − old thw car;
46

47 Delta psi = k car∗Delta time headway + k follow∗(time headway − 2.5)∗delta t;

90

48

49 ax = Delta psi ;
50 if Delta varphi ˜= 0
51 ay = sin(Delta varphi) ;
52 else
53 ay = 0;
54 end
55

56 % Update variables
57

58 if vx + ax∗delta t < max speed
59 vx = vx + ax∗delta t;
60 end
61 vy = vy + ay∗delta t;
62

63 x = x + vx∗delta t + 0.5∗ax∗delta tˆ2;
64 y = y + vy∗delta t + 0.5∗ay∗delta tˆ2;
65

66 old theta near = theta near;
67 old theta far = theta far ;
68 old thw car = time headway;
69

70 end

A.1.3 Decision Making Module

File A.3 decision making.m

1 function [lane , changing] = decision making(lane , old thw car , x, y, dec memory, changing,
vehicles pos)

2 %DECISION MAKING ACT−R decision making module
3

4 global width;
5

6 % Constant
7 thw pass = 20;
8

9 % Check whether a lane change is happening or not
10 if changing == true
11 if lane == 1 && abs(y − width/4) < 0.1
12 changing = false ;
13 elseif lane == 2 && abs(y − 3∗width/4) < 0.1
14 changing = false ;
15 end
16

17 return
18 end
19

20 if old thw car < thw pass && lane == 1
21 % attempt to change lanes
22 [lane ,changing] = try change lanes (2, dec memory, vehicles pos , x) ;
23 if changing == 1
24 abs(x − vehicles pos (1,1))
25 pause
26 end
27 elseif old thw car < thw pass && lane == 2
28 % attempt to change lanes

91

29 [lane ,changing] = try change lanes (1, dec memory, vehicles pos , x) ;
30 if changing == 1
31 abs(x − vehicles pos (2,1))
32 pause
33 end
34 end
35

36 end

A.1.4 Monitoring Module

File A.4 monitor.m

1 function [monitoring memory] = monitor(monitoring memory,x,vehicles pos)
2 %MONITOR ACT−R monitor module
3

4 global pMonitor width length ;
5

6 if rand > pMonitor
7 return
8 end
9

10 % Look vehicle
11 pm = rand;
12 if pm < 0.25
13 lane dir = 1; % lane 1, back
14

15 min dist = length+1;
16 for i = 1:size (vehicles pos ,1)
17 if vehicles pos (i ,1) < x && abs(vehicles pos(i ,2) − width/4) < 0.2
18 d = abs(vehicles pos (i ,1) − x);
19 min dist = min(min dist, d);
20 end
21 end
22 if min dist == length+1
23 exists = false ;
24 else
25 exists = true;
26 end
27 new info = [lane dir , exists , min dist];
28

29 elseif pm < 0.5
30 lane dir = 2; % lane 1, front
31

32 min dist = length+1;
33 for i = 1:size (vehicles pos ,1)
34 if vehicles pos (i ,1) > x && abs(vehicles pos(i ,2) − width/4) < 0.2
35 d = abs(vehicles pos (i ,1) − x);
36 min dist = min(min dist, d);
37 end
38 end
39 if min dist == length+1
40 exists = false ;
41 else
42 exists = true;
43 end
44 new info = [lane dir , exists , min dist];

92

45

46 elseif pm < 0.75
47 lane dir = 3; % lane 2, back
48

49 min dist = length+1;
50 for i = 1:size (vehicles pos ,1)
51 if vehicles pos (i ,1) < x && abs(vehicles pos(i ,2) − 3∗width/4) < 0.2
52 d = abs(vehicles pos (i ,1) − x);
53 min dist = min(min dist, d);
54 end
55 end
56 if min dist == length+1
57 exists = false ;
58 else
59 exists = true;
60 end
61 new info = [lane dir , exists , min dist];
62

63 else
64 lane dir = 4; % lane 2, front
65

66 min dist = length+1;
67 for i = 1:size (vehicles pos ,1)
68 if vehicles pos (i ,1) > x && abs(vehicles pos(i ,2) − 3∗width/4) < 0.2
69 d = abs(vehicles pos (i ,1) − x);
70 min dist = min(min dist, d);
71 end
72 end
73 if min dist == length+1
74 exists = false ;
75 else
76 exists = true;
77 end
78 new info = [lane dir , exists , min dist];
79 end
80

81 % Add to memory
82 monitoring memory = [monitoring memory(2:size(monitoring memory,1),:); new info];
83

84 end

A.2 Control Abstraction (Matlab)

File A.5 lane changing generator.m

1 % LANE CHANING GENERATOR − File that generates the table of a passing and returning to
2 % the initial lane .
3

4 % Author: Francisco Girbal Eiras , MSc Computer Science
5 % University of Oxford, Department of Computer Science
6 % Email: francisco . eiras@cs .ox.ac.uk
7 % 16−Apr−2018; Last revision: 12−May−2018
8

9 %−−−−−−−−−−−−− BEGIN CODE −−−−−−−−−−−−−−
10

11 clc
12 warning(’ off ’ , ’ all ’)

93

13

14 % Car size for collision purposes (both cars are assumed to be of equal dimensions)
15 h = 1.9;
16 w = 4.8;
17

18 % Possible initial distances between the vehicles
19 ds = linspace (1,43,43) ;
20 % ds = 25;
21

22 % Possible vehicles initial velocity
23 vi1s = linspace (15,34,20) ;
24 vi2s = linspace (15,34,20) ;
25 % vi1s = 30;
26 % vi2s = 20;
27

28 % Road width/length + time intervals for action
29 global width len delta t
30 width = 7.4;
31 len = 500;
32 delta t = 0.5;
33 n iter = 100;
34

35 % Code starts
36

37 generated table = zeros(2∗length(ds)∗length(vi1s)∗length(vi2s) , 9);
38 display (sprintf (’Generating table of %d entries ’ , size (generated table ,1)))
39 t1 = cputime;
40

41 other table = zeros(2∗length(ds)∗length(vi1s)∗length(vi2s) , 24);
42

43 textprogressbar (’Progress : ’)
44

45 % Simulate all possible combinations
46 for lane = 2:−1:1
47 for vi2 i = 1:length(vi2s)
48 for vi1 i = 1:length(vi1s)
49 for d i = 1:length(ds)
50

51 d = ds(d i) ;
52 vi1 = vi1s(vi1 i) ;
53 vi2 = vi2s(vi2 i) ;
54

55 sum x = 0;
56 sum vx = 0;
57 sum t = 0;
58 sum col = 0;
59

60 x y t = zeros(13∗n iter ,3) ;
61

62 f = figure(1) ;
63 hold on;
64

65 n write = 1;
66 bad run example = zeros(13,3);
67 temp = zeros(13,3);
68

69 for j=1:n iter
70

71 if lane == 1

94

72 x = d;
73 else
74 x = 0;
75 end
76 y = (−2∗lane + 5)∗width/4;
77 vx = vi1;
78 vy = 0;
79

80 if lane == 1
81 x1 = 0;
82 else
83 x1 = d;
84 end
85 y1 = width/4;
86 vx1 = vi2;
87 vy1 = 0;
88

89 old theta near = 0;
90 old theta far = 0;
91 old thw car = (x1 − x)/vx;
92

93 vehicles pos = [x1,y1];
94

95 col = false ;
96 t = 0;
97 ay = 100;
98

99 temp(1,:) = [0,x,y];
100 idx sub = 2;
101

102 while x < len && ˜(abs(y − (2∗lane−1)∗width/4) < 0.02)
103 col = check collision ([x,y], vehicles pos , h, w) || col ;
104

105 [x,y,vx,vy,ay, old theta near , old theta far , old thw car] = control(x,y,vx,
vy, lane , old theta near , old theta far , old thw car , vehicles pos) ;

106

107 vehicles pos (1,1) = vehicles pos (1,1) + vx1∗delta t ;
108 vehicles pos (1,2) = vehicles pos (1,2) + vy1∗delta t ;
109

110 t = t + delta t ;
111

112 temp(idx sub ,:) = [t , x, y];
113 idx sub = idx sub + 1;
114

115 plot (vehicles pos (1,1) , vehicles pos (1,2) , ’ or ’)
116 end
117

118 while floor (t) ˜= t
119 x = x + vx∗delta t;
120 vehicles pos (1,1) = vehicles pos (1,1) + vx1∗delta t ;
121 t = t + delta t ;
122

123 temp(idx sub ,:) = [t , x, y];
124 idx sub = idx sub + 1;
125 plot (vehicles pos (1,1) , vehicles pos (1,2) , ’ or ’)
126 end
127

128 % sum x = sum x + x;
129 sum vx = sum vx + vx;

95

130 sum t = sum t + t;
131 sum col = sum col + col;
132

133 if col == 0
134 x y t (13∗(n write − 1) + 1:13∗n write ,:) = temp;
135 n write = n write + 1;
136 else
137 bad run example = temp;
138 end
139 end
140

141 if lane == 1
142 sub mat = d∗[zeros(size (x y t ,1) , 1), ones(size (x y t ,1) ,1) , zeros(size (x y t

,1) , 1)];
143 x y t = x y t − sub mat;
144 sub mat = d∗[zeros(size (bad run example,1), 1), ones(size (bad run example,1)

,1) , zeros(size (bad run example,1), 1)];
145 bad run example = bad run example − sub mat;
146 end
147

148 if n write ˜= 1
149 x y t = x y t(1:13∗(n write−1),:) ;
150 else
151 x y t = [0,0,0];
152 end
153

154 if sum col/ n iter == 0
155 bad run example = [0,0,0];
156 end
157

158 p x = polyfit (x y t (:,1) , x y t (:,2) ,2) ;
159 p y = polyfit (x y t (:,1) , x y t (:,3) ,6) ;
160

161 bad p x = polyfit (bad run example(:,1) ,bad run example(:,2) ,2) ;
162 bad p y = polyfit (bad run example(:,1) ,bad run example(:,3) ,6) ;
163

164 plot (x y t (:,2) , x y t (:,3) , ’ob’)
165 plot (bad run example(:,2) , bad run example(:,3) , ’∗r ’)
166 p xy = polyfit (x y t (:,2) , x y t (:,3) ,5) ;
167 bad p xy = polyfit (bad run example(:,2) ,bad run example(:,3) ,5) ;
168 x1 = linspace (0,max(x y t (:,2))) ;
169 y1 = polyval(p xy,x1);
170 plot (x1,y1, ’b’)
171 x1 = linspace (0,max(bad run example(:,2)));
172 y1 = polyval(bad p xy,x1);
173 plot (x1,y1, ’ r ’)
174

175 pause
176

177 % est x1 = round(sum x/n iter)
178 est vx = max(round(sum vx/n iter), vi1) ;
179 est t = round(sum t/n iter);
180 est x = round(polyval(p x, est t)) ;
181 est col = sum col/n iter ;
182

183 idx = (2−lane)∗length(ds)∗length(vi1s)∗length(vi2s) + (vi2 i − 1)∗length(vi1s)∗
length(ds) + (vi1 i − 1)∗length(ds) + d i;

184

185 % generated table (idx ,:) = [3−lane,d,vi1 , vi2 , col ,round(x − (d)∗(2−lane)),round(vx)

96

,round(vehicles pos (1,1)−(d)∗(lane−1)),t];
186 generated table (idx ,:) = [3−lane,d,vi1 , vi2 , est col ,round(est x − (d)∗(2−lane)),

est vx ,round(vi2∗ est t−(d)∗(lane−1)),est t];
187 other table (idx ,:) = [3−lane,d,vi1 , vi2 ,p x,p y,bad p x,bad p y];
188

189 textprogressbar (100∗idx/(2∗length(ds)∗length(vi1s)∗length(vi2s)))
190 end
191 end
192 end
193 end
194

195 textprogressbar (’Done’)
196

197 display (sprintf (’Generated in %.3f seconds’ , cputime − t1))
198

199 % Display the table
200 header = {’o lane ’ , ’d’ , ’ vi1 ’ , ’ vi2 ’ , ’Acc?’, ’ delta x1 ’ , ’ vf1 ’ , ’ delta x2 ’ , ’ delta t ’};
201 % xForDisplay = [header; num2cell(generated table)];
202 % disp(xForDisplay)
203

204 header 1 = {’o lane ’ , ’d’ , ’ vi1 ’ , ’ vi2 ’ , ’p x(1) ’ , ’p x(2) ’ , ’p x(3) ’ , ’p y(1) ’ , ’p y(2) ’ , ’p y(3) ’ , ’
p y(4) ’ , ’p y(5) ’ , ’p y(6) ’ , ’p y(7) ’ , ’bad p x(1)’ , ’bad p x(2)’ , ’bad p x(3)’ , ’bad p y(1)’ , ’
bad p y(2)’ , ’bad p y(3)’ , ’bad p y(4)’ , ’bad p y(5)’ , ’bad p y(6)’ , ’bad p y(7)’};

205 % xForDisplay = [header 1; num2cell(other table)];
206 % disp(xForDisplay)
207

208 % Save the table generated to a CSV file with a header
209 cHeader = header;
210 commaHeader = [cHeader;repmat({’,’},1,numel(cHeader))]; %insert commaas
211 commaHeader = commaHeader(:)’;
212 textHeader = cell2mat(commaHeader); %cHeader in text with commas
213 textHeader = textHeader(1:end−1);
214

215 %write header to file
216 fid = fopen(’data/new/control table .csv ’ , ’w’);
217 fprintf (fid , ’%s\n’,textHeader);
218 fclose (fid) ;
219

220 %write data to end of file
221 dlmwrite(’data/new/control table .csv ’ , generated table , ’−append’);
222

223 % Save the other table as well
224 cHeader = header 1;
225 commaHeader = [cHeader;repmat({’,’},1,numel(cHeader))]; %insert commaas
226 commaHeader = commaHeader(:)’;
227 textHeader = cell2mat(commaHeader); %cHeader in text with commas
228 textHeader = textHeader(1:end−1);
229

230 %write header to file
231 fid = fopen(’data/new/other table.csv ’ , ’w’);
232 fprintf (fid , ’%s\n’,textHeader);
233 fclose (fid) ;
234

235 %write data to end of file
236 dlmwrite(’data/new/other table.csv ’ , other table , ’−append’);
237

238 %−−−−−−−−−−−−− END OF CODE −−−−−−−−−−−−−−

97

File A.6 linear control generator.m

1 % LINEAR ACCELARATION GENERATOR − File that generates the accelaration
2 % table based on the time headway of the car .
3

4 % Author: Francisco Girbal Eiras , MSc Computer Science
5 % University of Oxford, Department of Computer Science
6 % Email: francisco . eiras@cs .ox.ac.uk
7 % 24−Apr−2018; Last revision: 6−Jun−2018
8

9 %−−−−−−−−−−−−− BEGIN CODE −−−−−−−−−−−−−−
10

11 clc
12

13 % Possible initial distances between the vehicles
14 ds = linspace (1,80,80) ;
15

16 % Possible vehicle initial velocity
17 vs = linspace (15,34,20) ;
18

19 generated table = zeros(length(ds)∗length(vs) , 4);
20 display (sprintf (’Generating table of %d entries ’ , size (generated table ,1)))
21 t1 = cputime;
22

23 for d i = 1:length(ds)
24 for v i = 1:length(vs)
25

26 d = ds(d i) ;
27 v = vs(v i) ;
28

29 delta crash = d/v;
30

31 % if delta crash < 0.3
32 % a = −1;
33 % elseif delta crash <= 1
34 % a = 0;
35 % else
36 % a = 1;
37 % end
38

39 if delta crash <= 0.2
40 a = −2;
41 elseif delta crash <= 0.4
42 a = −1;
43 elseif delta crash <= 1
44 a = 0;
45 elseif delta crash <= 1.75
46 a = 1;
47 elseif delta crash <= 2.5
48 a = 2;
49 else
50 a = 3;
51 end
52

53 idx = (d i − 1)∗length(vs) + v i ;
54

55 generated table (idx ,:) = [d,v,round(delta crash ,2) ,a];
56 end
57 end

98

58

59 display (sprintf (’Generated in %.3f seconds’ , cputime − t1))
60

61 % Display the table
62 header = {’d’ , ’v’ , ’ delta crash ’ , ’a’};
63 xForDisplay = [header; num2cell(generated table)];
64 disp(xForDisplay)
65

66 % Save the table generated to a CSV file with a header
67 cHeader = header;
68 commaHeader = [cHeader;repmat({’,’},1,numel(cHeader))]; %insert commaas
69 commaHeader = commaHeader(:)’;
70 textHeader = cell2mat(commaHeader); %cHeader in text with commas
71 textHeader = textHeader(1:end−1);
72

73 %write header to file
74 fid = fopen(’data/mod acceleration table .csv ’ , ’w’);
75 fprintf (fid , ’%s\n’,textHeader);
76 fclose (fid) ;
77

78 %write data to end of file
79 dlmwrite(’data/ mod acceleration table .csv ’ , generated table , ’−append’);
80

81 %−−−−−−−−−−−−− END OF CODE −−−−−−−−−−−−−−

File A.7 control.m

1 function [x,y,vx,vy,ay, old theta near , old theta far , old thw car] = control(x, y, vx, vy, lane
, old theta near , old theta far , old thw car , vehicles pos)

2 %CONTROL ACT−R control module
3

4 global delta t width;
5

6 % Constants
7 k far = 15;%15;
8 k near = 3;%3;
9 k i = 5;%5;

10 theta nmax = 1.57;
11 k car = 3;%4;
12 k follow = 1;
13 max speed = 34; % approximately 120 km/h
14

15 std dev = 2;
16

17 if lane == 1
18 y follow = width/4;
19 else
20 y follow = 3∗width/4;
21 end
22

23 near point = [x + 4, y follow];
24 far point = [x + 10, y follow];
25

26 theta near = tan((near point(2) − y)/(near point(1) − x));
27 theta far = tan((far point (2) − y)/(far point (1) − x));
28

29 Delta theta near = theta near − old theta near ;
30 Delta theta far = theta far − old theta far ;
31

99

32 Delta varphi = k far∗ Delta theta far + k near∗Delta theta near + k i∗min(theta near,theta nmax
)∗delta t ;

33

34 % To determine timeheadway, check for vehicles /accidents between the
35 % car position and far point ; the timeheadway corresponds to the
36 % timeheadway to the closest vehicle (or the end of the road)
37

38 min timeheadway = 3 + normrnd(0,std dev); % the maximum timeheadway
39 for i = 1:size (vehicles pos ,1)
40 if vehicles pos (i ,1) > x && abs(vehicles pos(i ,2) − y) < 0.2
41 th = (vehicles pos (i ,1) − x + normrnd(0,std dev))/vx;
42 min timeheadway = min(min timeheadway, th);
43 end
44 end
45 time headway = min timeheadway;
46

47 Delta time headway = time headway − old thw car;
48

49 Delta psi = k car∗Delta time headway + k follow∗(time headway − 1)∗delta t;
50

51 ax = Delta psi ;
52 if Delta varphi ˜= 0
53 ay = sin(Delta varphi) ;
54 else
55 ay = 0;
56 end
57

58 % Update variables
59

60 if vx + ax∗delta t < max speed
61 vx = vx + ax∗delta t;
62 end
63 vy = vy + ay∗delta t;
64

65 x = x + vx∗delta t + 0.5∗ax∗delta tˆ2;
66 y = y + vy∗delta t + 0.5∗ay∗delta tˆ2;
67

68 old theta near = theta near;
69 old theta far = theta far ;
70 old thw car = time headway;
71

72 end

File A.8 check collision.m

1 function happened = check collision (vehicle 1 , vehicle 2 , h, w)
2 %CHECK COLLISION Verify the occurence of a collision
3

4 rect 1 = [vehicle 1 (1) − w/2, vehicle 1(2) + h/2, w, h];
5 rect 2 = [vehicle 2 (1) − w/2, vehicle 2(2) + h/2, w, h];
6

7 area = rectint (rect 1 , rect 2) ;
8

9 happened = (area ˜= 0);
10

11 end

100

A.3 Decision Making and Monitoring Abstraction

(Matlab)

File A.9 decision making generator.m

1 % DECISION MAKING GENERATOR − File that generates the decision making table
2 % in terms of probability of changing lanes at certain points
3

4 % Author: Francisco Girbal Eiras , MSc Computer Science
5 % University of Oxford, Department of Computer Science
6 % Email: francisco . eiras@cs .ox.ac.uk
7 % 24−Apr−2018; Last revision: 24−Apr−2018
8

9 %−−−−−−−−−−−−− BEGIN CODE −−−−−−−−−−−−−−
10

11 clc
12

13 % Possible initial distances between the vehicles
14 ds = linspace (1,80,80) ;
15

16 % Possible vehicle initial velocity
17 vs = linspace (15,34,20) ;
18

19 generated table = zeros(3∗length(ds)∗length(vs) + 3∗length(ds), 7);
20 display (sprintf (’Generating table of %d entries ’ , size (generated table ,1)))
21 t1 = cputime;
22

23 mean dt = [0,2,4];
24 std dt = [0.6,0.3,1];
25

26 exp param dt = [1,0.6,0.4];
27 std dev = 2;
28 l = 20;
29

30 % the model will have a parameter ’ driver type ’ which is equal to
31 % 1 if aggressive , 2 if average or 3 if conservative
32 for driver i = 1:3
33 for d i = 1:length(ds)
34 for v i = 1:length(vs)
35

36 d = ds(d i) ;
37 v = vs(v i) ;
38

39 delta crash = d/v;
40

41 % x = 0:0.1:4;
42 % val1 = exp(−exp param dt(1)∗x);
43 % val2 = exp(−exp param dt(2)∗x);
44 % val3 = exp(−exp param dt(3)∗x);
45 %
46 % figure ;
47 % hold on;
48 % plot (x, val1) ;
49 % plot (x, val2) ;
50 % plot (x, val3) ;
51 %
52 % pause

101

53 %
54 % return
55

56 x = 1:1:80;
57 dist small 0 = normcdf(0, d, std dev) ;
58 dist greater 80 = 1 − normcdf(80,d,std dev);
59 P = normcdf(x + 0.5, d, std dev) − normcdf(x − 0.5, d, std dev) ;
60 P lC = exp(−exp param dt(driver i)∗x/v);
61

62 plC = P∗P lC’ + (dist small 0 + dist greater 80)∗exp(−exp param dt(driver i)∗d/v);
63

64 idx = (driver i − 1)∗length(ds)∗length(vs) + (d i − 1)∗length(vs) + v i ;
65

66 generated table (idx ,:) = [1, driver i ,d,v,round(delta crash ,2) ,round(plC,2),1−round
(plC,2)];

67 end
68 end
69 end
70

71 mean dd = [10,40,70];
72 std dd = [20,7,20];
73

74 log param dd = [1000,0.5,0.01];
75

76 for driver i = 1:3
77 for d i = 1:length(ds)
78

79 d = ds(d i) ;
80 %
81 x = 0:0.5:80;
82 val1 = 1/log(80∗1000+1)∗log(1000∗x+1);
83 val2 = 1/log(80∗0.5+1)∗log(0.5∗x+1);
84 val3 = 1/log(80∗0.01+1)∗log(0.01∗x+1);
85

86 figure ;
87 hold on;
88 plot (x, val1) ;
89 plot (x, val2) ;
90 plot (x, val3) ;
91

92 pause
93

94 plC = 1/log(80∗log param dd(driver i)+1)∗log(log param dd(driver i)∗d+1);
95

96 idx = 3∗length(ds)∗length(vs) + (driver i − 1)∗length(ds) + d i;
97

98 generated table (idx ,:) = [2, driver i ,d,−1,0,round(plC,2),1−round(plC,2)];
99 end

100 end
101

102 display (sprintf (’Generated in %.3f seconds’ , cputime − t1))
103

104 % Display the table
105 header = {’lane’ , ’type’ , ’d’ , ’v’ , ’ delta crash ’ , ’P lC’ , ’P nlC’};
106 xForDisplay = [header; num2cell(generated table)];
107 disp(xForDisplay)
108

109 % Save the table generated to a CSV file with a header
110 cHeader = header;

102

111 commaHeader = [cHeader;repmat({’,’},1,numel(cHeader))]; %insert commaas
112 commaHeader = commaHeader(:)’;
113 textHeader = cell2mat(commaHeader); %cHeader in text with commas
114 textHeader = textHeader(1:end−1);
115

116 %write header to file
117 fid = fopen(’data/dm table.csv’ , ’w’);
118 fprintf (fid , ’%s\n’,textHeader);
119 fclose (fid) ;
120

121 %write data to end of file
122 dlmwrite(’data/dm table.csv’ , generated table , ’−append’);
123

124 %−−−−−−−−−−−−− END OF CODE −−−−−−−−−−−−−−

A.4 Probabilistic Two Module Model Generator

(Python)

File A.10 model generator.py

1 # MODEL GENERATOR − Tranform the generated tables using
2 # generator.m and decision making.m into a PRISM file
3 # with the modules.
4

5 # Author: Francisco Girbal Eiras , MSc Computer Science
6 # University of Oxford, Department of Computer Science
7 # Email: francisco . eiras@cs .ox.ac.uk
8 # 25−Apr−2018; Last revision: 9−Jun−2018
9

10 import sys , csv , argparse , datetime
11

12 parser=argparse.ArgumentParser(
13 description =’’’Tranform the generated tables using generator .m and decision making.m into

a PRISM file with the two modules. ’’’)
14 parser .add argument(’lane change table ’ , type=str, help=’Table for the lane change part of the

control module.’)
15 parser .add argument(’acc table ’ , type=str, help=’Table for the linear accelaration part of the

control module.’)
16 parser .add argument(’dm table’, type=str, help=’Table for the decision making module.’)
17 parser .add argument(’[driver type] ’ , type=int, default =2, help=’1 = aggressive, 2 = average, 3

= cautious’)
18 parser .add argument(’[v] ’ , type=int, default =29, help=’ Initial velocity of the vehicle . ’)
19 parser .add argument(’[v1] ’ , type=int, default =30, help=’ Initial velocity of the other vehicle .

’)
20 parser .add argument(’[x1 0] ’ , type=int, default =15, help=’ Initial position of the other

vehicle . ’)
21 parser .add argument(’−−filename [NAME]’, type=str, help=’Output name for the file generated. ’)
22 args=parser. parse args ()
23

24 if len(sys .argv) == 8:
25 f = open(”two component model.pm”, ”w”)
26 else :
27 f = open(”%s.pm”%sys.argv[9], ”w”)
28

29 driver type = sys.argv [4]
30 v = sys.argv [5]

103

31 v1 = sys.argv [6]
32 x1 0 = sys.argv [7]
33 if not (int (v) >= 15 and int(v) <= 34) or not (int(v1) >= 15 and int(v1) <= 34) or not (int(

x1 0) >= 1 and int(x1 0) <= 500) or int(driver type) not in [1,2,3]:
34 raise ValueError(”Input out of range.”)
35

36 max control dist = ”43”
37 max dm dist = ”80”
38 crash dist = ”6”
39

40 now = datetime.datetime.now()
41

42 print (’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\nNon−deterministic
control version of model generator.py.\n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’)

43

44 # Write the beginning of the file
45 f . write (”//Model automatically built using model generator.py for v1 = %s and driver type = %

s (to alter these values , run the script again).\n”%(v1,driver type))
46 f . write (”//Generated on %s.\n\n”%(now.strftime(”%d−%m−%Y at %H:%M”)))
47 f . write (”dtmc\n\n”)
48 f . write (”const int length = 500; // road length\n”)
49 f . write (”const int driver type = 1; // 1 = aggressive , 2 = average, 3 = cautious drivers − do

not alter this manually!\n”)
50 f . write (”const int max time = 35; // maximum time of experiment\n\n”)
51 f . write (”// Other vehicle\n”)
52 f . write (”const int v1 = %s; // do not alter this manually!\n”%v1)
53 f . write (”const int x1 0 = %s;\n\n”%x1 0)
54 f . write (”// Environment variables\n”)
55 f . write (”global t : [0.. max time] init 0; // time \n”)
56 f . write (”global crashed : bool init false ; \n\n”)
57 f . write (”// Vehicle controlled \n”)
58 f . write (”global actrState : [1..2] init 1; // active module: 1 = control (both cars) , 2 =

decision making + monitoring\n”)
59 f . write (”global lC : bool init false ; // lane changing occuring? \n”)
60 f . write (”global x : [0.. length] init 0;\n”)
61 f . write (”global v : [15..34] init %s;\n”%v)
62 f . write (”global a : [−3..3] init 0;\n”)
63 f . write (”global lane : [1..2] init 1;\n\n”)
64 f . write (”formula x1 = x1 0 + v1∗t;\n”)
65 f . write (”formula dist = x1>x?(x1 − x):(x − x1);\n”)
66 f . write (”formula positiveDist = (x < length)?x > x1:true;\n\n”)
67

68 # Decision making + monitoring module
69 f . write (”module Decision Making Monitoring\n\n”)
70 f . write (” // If a crash occurs , then nothing else can happen\n”)
71 f . write (” //[] actrState = 2 & crashed −> 1:(crashed’ = true);\n\n”)
72

73 f . write (” // If we are in lane 2, but behind the other vehicle , don’t try to pass\n”)
74 f . write (” [] actrState = 2 & !crashed & lane = 2 & positiveDist = false −> 1:(actrState’ = 1)

;\n\n”)
75

76 f . write (” // If we are in lane 1, and no vehicle is in front , don’t change lanes\n”)
77 f . write (” [] actrState = 2 & !crashed & lane = 1 & positiveDist = true −> 1:(actrState’ = 1);\

n\n”)
78

79 with open(sys.argv [3]) as csvfile :
80 reader = csv.DictReader(csvfile)
81 for row in reader :

104

82 # should we change from lane 1 to lane 2? it ’ s based on delta crash !
83 if row[”type”] == driver type and row[”lane”] == ”1” and row[”d”] != max dm dist:
84 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist = %s & v

= %s −> %s:(actrState’ = 1) & (lC’ = true) + %s:(actrState’ = 1) & (lC’ = false);\n” % (
row[”d”],row[”v”],row[”P lC”],row[”P nlC”])

85 f . write (line)
86 elif row[”type”] == driver type and row[”lane”] == ”1” and row[”d”] == max dm dist:
87 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist >= %s &

v = %s −> %s:(actrState’ = 1) & (lC’ = true) + %s:(actrState’ = 1) & (lC’ = false);\n” % (
row[”d”],row[”v”],row[”P lC”],row[”P nlC”])

88 f . write (line)
89

90 # should we go back to lane 1 from lane 2? it ’ s based on the distance we are at!
91 if row[”type”] == driver type and row[”lane”] == ”2” and row[”d”] != max dm dist:
92 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist = %s −>

%s:(actrState’ = 1) & (lC’ = true) + %s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row
[”P lC”],row[”P nlC”])

93 f . write (line)
94 elif row[”type”] == driver type and row[”lane”] == ”2” and row[”d”] == max dm dist:
95 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist >= %s

−> %s:(actrState’ = 1) & (lC’ = true) + %s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”
],row[”P lC”],row[”P nlC”])

96 f . write (line)
97

98 f . write (”endmodule\n\n”)
99

100 # Control module
101 f . write (”module Control\n\n”)
102

103 f . write (” // If we are in lane 1, and no lane change was decided, continue forward (which
might result in crash)\n”)

104 f . write (” // The vehicle is behind the other driver (positiveDist = false , x < x1)\n”)
105 with open(sys.argv [2]) as csvfile :
106 reader = csv.DictReader(csvfile)
107 for row in reader :
108 if row[”d”] != max dm dist:
109 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a < 34 & v + a > 15 &
dist = %s & v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v + a) & (a’ = %s) & (
actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],row[”a”])

110 f . write (line)
111 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a >= 34 & dist = %s &
v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = %s) & (actrState’ = 2);\n” %
(crash dist,row[”d”],row[”v”],row[”a”])

112 f . write (line)
113 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a <= 15 & dist = %s &
v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = %s) & (actrState’ = 2);\n” %
(crash dist,row[”d”],row[”v”],row[”a”])

114 f . write (line)
115 elif row[”d”] == max dm dist:
116 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a < 34 & v + a > 15 &
dist >= %s & v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v + a) & (a’ = %s) & (
actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],row[”a”])

117 f . write (line)
118 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a >= 34 & dist >= %s

105

& v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = %s) & (actrState’ = 2);\n”
% (crash dist,row[”d”],row[”v”],row[”a”])

119 f . write (line)
120 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a <= 15 & dist >= %s
& v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = %s) & (actrState’ = 2);\n”
% (crash dist,row[”d”],row[”v”],row[”a”])

121 f . write (line)
122

123 f . write (”\n [] actrState = 1 & !crashed & !lC & lane = 1 & x > length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) >= %s −> 1:(x’ = length) & (t’ = t + 1) & (
actrState’ = 2);\n”%crash dist)

124 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x > length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s −> 1:(x’ = length) & (t’ = t + 1) & (crashed’
= true) & (actrState’ = 2);\n\n”%crash dist)

125

126 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s & v + a < 34 & v + a > 15 −> 1:(x’ = x + v
) & (t’ = t + 1) & (v’ = v + a) & (crashed’ = true) & (actrState’ = 2);\n”%crash dist)

127 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s & v + a >= 34 −> 1:(x’ = x + v) & (t’ = t
+ 1) & (v’ = 34) & (crashed’ = true) & (actrState’ = 2);\n”%crash dist)

128 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s & v + a <= 15 −> 1:(x’ = x + v) & (t’ = t
+ 1) & (v’ = 15) & (crashed’ = true) & (actrState’ = 2);\n”%crash dist)

129

130 f . write (” // The vehicle is in front of the other driver (positiveDist = true, x > x1)\n”)
131 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &

positiveDist = true & v + a < 34 & v + a > 15 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v
+ a) & (a’ = 0) & (actrState’ = 2);\n”)

132 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = true & v + a >= 34 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (
actrState’ = 2);\n”)

133 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = true & v + a <= 15 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (
actrState’ = 2);\n\n”)

134

135 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x > length − v & t < max time &
positiveDist = true −> 1:(x’ = length) & (t’ = t + 1) & (actrState’ = 2);\n\n”)

136

137 f . write (” // If we are in lane 2, and no lane change was decided, continue forward\n”)
138 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v

+ a < 34 & v + a > 15 & positiveDist = true −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v +
a) & (a’ = 0) & (actrState’ = 2);\n”)

139 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a >= 34 & positiveDist = true −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = 0) &
(actrState’ = 2);\n”)

140 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a <= 15 & positiveDist = true −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = 0) &
(actrState’ = 2);\n\n”)

141

142 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a < 34 & v + a > 15 & positiveDist = false −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v +
a) & (a’ = 0) & (actrState’ = 2);\n”)

143 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a >= 34 & positiveDist = false −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = 0)
& (actrState’ = 2);\n”)

144 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a <= 15 & positiveDist = false −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = 0)

106

& (actrState’ = 2);\n\n”)
145

146 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x > length − v & t < max time & v +
a < 34 & v + a > 15 −> 1:(x’ = length) & (t’ = t + 1) & (v’ = v + a) & (actrState’ = 2);\

n”)
147 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x > length − v & t < max time & v +

a >= 34 −> 1:(x’ = length) & (t’ = t + 1) & (v’ = 34) & (actrState’ = 2);\n”)
148 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x > length − v & t < max time & v +

a <= 15 −> 1:(x’ = length) & (t’ = t + 1) & (v’ = 15) & (actrState’ = 2);\n\n”)
149

150 with open(sys.argv [1]) as csvfile :
151 reader = csv.DictReader(csvfile)
152 for row in reader :
153 probCrash = float(row[”Acc?”])
154

155 if probCrash != 0 and probCrash != 1:
156 if row[”d”] != max control dist and row[”vi2”] == v1:
157 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = t + %s) & (a’ = 0) & (
lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”
delta x1”],row[”delta t”], probCrash,1−probCrash,row[”delta x1”],row[”vf1”], row[” delta t ”],
str (3 − int(row[”o lane”])))

158 f . write (line)
159 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = t + %s) & (a’ = 0) & (
lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”], row[
”delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”],row[” delta t ”], str (3 − int(row
[”o lane”])))

160 f . write (line)
161 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = max time) & (a’ = 0)
& (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],
row[”delta x1”],row[” delta t ”], probCrash,1−probCrash,row[”delta x1”],row[”vf1”], str (3 − int
(row[”o lane”])))

162 f . write (line)
163 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = max time) & (a’ = 0) &
(lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],
row[”delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”], str (3 − int(row[”o lane”])
))

164 f . write (line)
165 elif row[”d”] == max control dist and row[”vi2”] == v1:
166 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’
= false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = t + %s) & (a’ = 0)

& (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],
row[”delta x1”],row[”delta t”],probCrash,1−probCrash,row[”delta x1”],row[”vf1”], row[” delta t
”], str (3 − int(row[”o lane”])))

167 f . write (line)
168 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = t + %s) & (a’ = 0) & (
lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”
delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”],row[” delta t ”], str (3 − int(row[
”o lane”])))

107

169 f . write (line)
170 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’
= false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = max time) & (a’ =
0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”
],row[”delta x1”],row[”delta t”], probCrash,1−probCrash,row[”delta x1”],row[”vf1”], str (3 −
int(row[”o lane”])))

171 f . write (line)
172 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = max time) & (a’ = 0) &
(lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”], row[
”delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”], str (3 − int(row[”o lane”])))

173 f . write (line)
174 elif probCrash == 0:
175 if row[”d”] != max control dist and row[”vi2”] == v1:
176 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %s)
& (t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”],row[”vf1”], row[”
delta t ”], str (3 − int(row[”o lane”])))

177 f . write (line)
178 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) &
(t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”], row[”vf1”], row[” delta t ”], str (3 −
int(row[”o lane”])))

179 f . write (line)
180 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) &
(t’ = max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”], row[”vf1”], str (3 −
int(row[”o lane”])))

181 f . write (line)
182 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’
= max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”

o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[” delta t ”], row[”vf1”], str (3 − int(row[”
o lane”])))

183 f . write (line)
184 elif row[”d”] == max control dist and row[”vi2”] == v1:
185 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %
s) & (t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[
”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”],row[”vf1”],row[”
delta t ”], str (3 − int(row[”o lane”])))

186 f . write (line)
187 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) &
(t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”vf1”], row[” delta t ”], str (3 −
int(row[”o lane”])))

188 f . write (line)
189 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %s)
& (t’ = max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[

”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”],row[”vf1”], str (3
− int(row[”o lane”])))

190 f . write (line)

108

191 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >
length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t

’ = max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”], row[”vf1”], str (3 − int(row[”
o lane”])))

192 f . write (line)
193 else :
194 if row[”d”] != max control dist and row[”vi2”] == v1:
195 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

196 f . write (line)
197 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false
);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

198 f . write (line)
199 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false)
;\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

200 f . write (line)
201 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false)
;\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

202 f . write (line)
203 elif row[”d”] == max control dist and row[”vi2”] == v1:
204 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

205 f . write (line)
206 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

207 f . write (line)
208 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

209 f . write (line)
210 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false)
;\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

211 f . write (line)
212

213

214 f . write (”\nendmodule”)
215

216 f . close ()

A.5 Prism Automatic Model Checker (Python)

File A.11 prism automatic model checker.py

1 # AUTOMATIC MODEL CHECKER − Executes the script model generator.py
2 # for some given parameters in order to build the model and perform
3 # model checking subquentially .
4

5 # Author: Francisco Girbal Eiras , MSc Computer Science
6 # University of Oxford, Department of Computer Science

109

7 # Email: francisco . eiras@cs .ox.ac.uk
8 # 26−Apr−2018; Last revision: 3−May−2018
9

10 import sys , os, subprocess , csv , argparse
11

12 parser=argparse.ArgumentParser(
13 description =’’’Executes the script model generator.py for some given parameters in order

to build the model and perform model checking subquentially . ’’’)
14 parser .add argument(’ properties file ’ , type=str, help=’File of the properties to be checked (

PCTL or LTL).’)
15 parser .add argument(’[v] ’ , type=int, default =29, help=’ Initial velocity of the vehicle . ’)
16 parser .add argument(’[v1] ’ , type=int, default =30, help=’ Initial velocity of the other vehicle .

’)
17 parser .add argument(’[x1 0] ’ , type=int, default =15, help=’ Initial position of the other

vehicle . ’)
18 parser .add argument(’−−clean [VALUE]’, type=str, help=’If [VALUE] = False, then generated

files (model and individual results) will be maintained (default = True).’)
19 args=parser. parse args ()
20

21 types = [’ aggressive ’ , ’average’ , ’ cautious ’]
22 res = {}
23

24 source path = ””
25 path = ”results/”
26 properties file = sys.argv [1]
27 v = sys.argv [2]
28 v1 = sys.argv [3]
29 x1 0 = sys.argv [4]
30

31 if len(sys .argv) > 5 and sys.argv [6] == ”False”:
32 cleaning up = False
33 else :
34 cleaning up = True
35

36 num properties = sum(1 for line in open(properties file))
37 with open(properties file) as f1 :
38 props = f1. readlines ()
39 props = [x. strip () for x in props]
40

41 for driver type in range(1,4) :
42 print (’−−−−−− %s driver −−−−−−’%types[driver type−1])
43

44 filename = ”gen model %s %s %s %s”%(driver type,v,v1,x1 0)
45 r filename = ” results %s %s %s %s %s”%(driver type,properties file ,v,v1,x1 0)
46

47 # Construct the file
48 print (’Generating the model ... ’)
49 os.system(’python3 %smodel generator.py %smodel tables/control table .csv %smodel tables/

acc table.csv %smodel tables/dm table.csv %s %s %s %s −−filename %s%s > /dev/null’%(
source path,source path,source path,source path,driver type,v,v1,x1 0,path, filename))

50

51 print (’ Building the model and performing model checking ... ’)
52 subprocess .run(”prism %s%s.pm properties.pctl −exportresults %s%s.txt &> /dev/null”%(path,

filename,path,r filename), shell =True)
53

54 print (’Obtaining the results ... ’)
55

56 f = open(”%s%s.txt”%(path,r filename), ”r”)
57

110

58 if num properties == 1:
59 f . readline ()
60 probability = f. readline ()
61 f . close ()
62

63 probability = float(probability [:−1])
64 res [driver type] = [props [0], probability]
65 else :
66 f . readline ()
67 f . readline ()
68 probability = f. readline ()
69

70 probability = float(probability [:−1])
71 res [driver type] = [[props [0], probability]]
72

73 for i in range(1,num properties) :
74 f . readline ()
75 f . readline ()
76 f . readline ()
77 probability = f. readline ()
78

79 probability = float(probability [:−1])
80 res [driver type]. append([props[i], probability])
81

82 f . close ()
83

84 if cleaning up == True:
85 print (’Cleaning up ... ’)
86 os.system(’rm %s%s.pm’%(path,filename))
87 os.system(’rm %s%s.txt’%(path,r filename))
88

89 with open(’%s%s %s %s %s.csv’%(path,properties file,v,v1,x1 0), ’w’) as csvfile :
90 fieldnames = [’ type driver ’ , ’ property ’ , ’ probability ’]
91 writer = csv.DictWriter(csvfile , fieldnames=fieldnames)
92

93 writer . writeheader ()
94 for key, val in res . items() :
95 for propty in val :
96 writer .writerow({ ’ type driver ’ : key, ’ property ’ : propty [0], ’ probability ’ : propty [1]})
97

98 print (’Done.’)

A.6 Storm Automatic Model Checker (Python)

File A.12 storm model checker.py

1 # STORM MODEL CHECKER − Executes the script model generator.py
2 # for some given parameters in order to build the model and perform
3 # model checking subquentially in storm (changed to use the path source/).
4

5 # Author: Francisco Girbal Eiras , MSc Computer Science
6 # University of Oxford, Department of Computer Science
7 # Email: francisco . eiras@cs .ox.ac.uk
8 # 3−Jun−2018; Last revision: 3−Jun−2018
9

10 import sys , os, subprocess , csv , argparse
11 from datetime import datetime

111

12 startTime = datetime.now()
13

14 parser=argparse.ArgumentParser(
15 description =’’’Executes the script model generator.py for some given parameters in order

to build the model and perform model checking subquentially in storm (changed to use the
path source/). ’’’)

16 parser .add argument(’ properties file ’ , type=str, help=’File of the properties to be checked (
PCTL or LTL).’)

17 parser .add argument(’[v] ’ , type=int, default =29, help=’ Initial velocity of the vehicle . ’)
18 parser .add argument(’[v1] ’ , type=int, default =30, help=’ Initial velocity of the other vehicle .

’)
19 parser .add argument(’[x1 0] ’ , type=int, default =15, help=’ Initial position of the other

vehicle . ’)
20 parser .add argument(’−−clean [VALUE]’, type=str, help=’If [VALUE] = False, then generated

files (model and individual results) will be maintained (default = True).’)
21 parser .add argument(’−−path [PATH]’, type=str, help=’Generated file will be saved in PATH.’)
22 args=parser. parse args ()
23

24 types = [’ aggressive ’ , ’average’ , ’ cautious ’]
25 res = {}
26

27 properties file = sys.argv [1]
28 v = sys.argv [2]
29 v1 = sys.argv [3]
30 x1 0 = sys.argv [4]
31 path = ” gen files ”
32

33 progress = True
34

35 if len(sys .argv) > 5 and sys.argv [5] == ”−−clean” and sys.argv[6] == ”False”:
36 cleaning up = False
37 else :
38 cleaning up = True
39

40 if len(sys .argv) > 5 and sys.argv [5] == ”−−path”:
41 path = sys.argv [6]
42

43 if progress == True:
44 toolbar width = 9
45 sys . stdout . write (”Progress: [%s]” % (” ” ∗ toolbar width))
46 sys . stdout . flush ()
47 sys . stdout . write (”\b” ∗ (toolbar width+1))
48

49 for driver type in range(1,4) :
50 if progress == False:
51 print (’−−−−−− %s driver −−−−−−’%types[driver type−1])
52

53 filename = ”gen model %s %s %s %s”%(driver type,v,v1,x1 0)
54 r filename = ” results %s %s %s %s %s”%(driver type,properties file ,v,v1,x1 0)
55

56 # Construct the file
57 if progress == False:
58 print (’Generating the model ... ’)
59 os.system(’python3 source/model generator.py source/model tables/ control table .csv source/

model tables/acc table .csv source/model tables/dm table.csv %s %s %s %s −−filename
source/%s > /dev/null’%(driver type,v,v1,x1 0,filename))

60

61 if progress == True:
62 sys . stdout . write (”=”)

112

63 sys . stdout . flush ()
64

65 if progress == False:
66 print (’ Building the model and performing model checking ... ’)
67 proc = subprocess.Popen(’storm −−prism source/%s.pm −−prop source/%s’%(filename,

properties file), stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True)
68 output = str(proc. stdout .read())
69

70 if progress == True:
71 sys . stdout . write (”=”)
72 sys . stdout . flush ()
73

74 idx = output.find(’\\n
−−
\\n’, 500)

75 output = output[idx + 69:]
76 idx3 = 0
77

78 while idx3 != −1:
79 idx1 = output.find(’\\n’)
80 first line = output[0:idx1]
81 idx2 = output.find(’\\n’, idx1+1)
82 second line = output[idx1+2:idx2+2]
83 idx3 = output.find(’\\n\\n’, idx2+1)
84

85 prop = first line [24: first line . find (’ ... ’)−1]
86 val = second line [29: second line . find (’\\n’)]
87

88 try :
89 probability = float(val)
90 except ValueError :
91 print (’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n’)
92 print (output)
93 os.system(’rm source/%s.pm’%filename)
94 exit ()
95

96 if not driver type in res .keys() :
97 res [driver type] = [[prop, probability]]
98 else :
99 res [driver type]. append([prop, probability])

100 if progress == False:
101 print (prop + ’ : ’ + str(probability))
102 output = output[idx3+4:]
103

104 if cleaning up == True:
105 if progress == False:
106 print (’Cleaning up ... ’)
107 os.system(’rm source/%s.pm’%filename)
108

109 if progress == True:
110 sys . stdout . write (”=”)
111 sys . stdout . flush ()
112

113 if progress == True:
114 sys . stdout . write (”\n”)
115

116 with open(’%s/r %s %s %s.csv’%(path,v,v1,x1 0), ’w’) as csvfile :
117 fieldnames = [’ type driver ’ , ’ property ’ , ’ probability ’]
118 writer = csv.DictWriter(csvfile , fieldnames=fieldnames)

113

119

120 writer . writeheader ()
121 for key, val in res . items() :
122 for propty in val :
123 writer .writerow({ ’ type driver ’ : key, ’ property ’ : propty [0], ’ probability ’ : propty [1]})
124

125 if progress == False:
126 print (’Done.’)
127 print (datetime.now() − startTime)

A.7 Simulator (Python)

File A.13 simulate.py

1 # SIMULATE − Given a PRISM model, obtain a sample
2 # trace using get trace .py and simulate it .
3

4 # Author: Francisco Girbal Eiras , MSc Computer Science
5 # University of Oxford, Department of Computer Science
6 # Email: francisco . eiras@cs .ox.ac.uk
7 # 12−May−2018; Last revision: 2−Aug−2018
8

9 import pygame
10 import sys , os, csv , argparse , subprocess
11

12 parser=argparse.ArgumentParser(
13 description =’’’Given a PRISM model, obtain a sample trace using get trace .py and simulate

it . ’’’)
14 parser .add argument(’model’, type=str, help=’The model from which to obtain the sample

execution (built using model generator.py). ’)
15 parser .add argument(’−x’, ’−−times’, type=float, default =1, help=’Execution is X times faster .

’)
16 parser .add argument(’−rt’, ’−−read trace’, action=”store true”, help=’Read an existing trace . ’

)
17 args=parser. parse args ()
18

19 model = args.model
20 speed = args.times
21

22 # Helper functions
23 image library = {}
24 def get image(path):
25 global image library
26 image = image library .get(path)
27 if image == None:
28 canonicalized path = path.replace(’/’ , os.sep) . replace (’\\’ , os.sep)
29 image = pygame.image.load(’graphics/’ + canonicalized path)
30 if path == ”background.png”:
31 image = pygame.transform.scale(image, (1000,400))
32 if path == ”car red.png” or path == ”car grey.png”:
33 image = pygame.transform.scale(image, (20,11))
34 image library [path] = image
35 return image
36

37 def render centered (screen , text , color) :
38 label = crashed font. render(text , 1, color)
39 size = crashed font. size (text)

114

40 screen . blit (label , (500 − size [0]/2.0, 200 − size [1]/2.0))
41

42 def detect crash (x1, y1, x2, y2, w, h):
43 x = max(x1 − w/2, x2 − w/2)
44 y = max(y1 − h/2, y2 − h/2)
45 w new = min(x1 + w/2, x2 + w/2) − x
46 h new = min(y1 + h/2, y2 + h/2) − y
47 if w new <= 0 or h new <= 0:
48 return False
49 return True
50

51 # Main code
52 v1 = −1
53 x1 0 = −1
54

55 f = open(model, ’r’)
56

57 for line in f :
58 if ”const int v1” in line :
59 nums = line. split ()
60 v1 = int(nums[4][:−1])
61 elif ”const int x1 0” in line :
62 nums = line. split ()
63 x1 0 = int(nums[4][:−1])
64 break
65

66 if v1 == −1 or x1 0 == −1:
67 print (”Error : model not generated using the model generator.py (problems reading v1 and x1 0

)”)
68 quit ()
69

70 f . close ()
71

72 # Generate the trace
73 if not args . read trace :
74 subprocess .run(”python3 get trace .py %s %d %d”%(model, v1, x1 0), shell=True)
75

76 pygame.init ()
77 pygame.display . set caption (’Sample Path Simulation’)
78 screen = pygame.display.set mode((1000,400))
79 myfont = pygame.font.SysFont(”monospaced”, 20)
80 crashed font = pygame.font.SysFont(”monospaced”, 45)
81 time font = pygame.font.SysFont(”monospaced”, 60)
82

83 csvfile = open(’gen trace.csv ’)
84 reader = csv.DictReader(csvfile)
85 comm = next(reader)
86

87 # Read the first command
88 t init = 0
89 x init = 0
90 y init = 1.8
91 t end = int(comm[’t end’])
92 type comm = int(comm[’type’])
93 curr v = int(comm[’v’])
94 crashed = bool(int(comm[’crashed’]))
95 x coeffs = [float (comm[’x t 1’]) , float (comm[’x t 2’]) , float (comm[’x t 3’])]
96 y coeffs = [float (comm[’y t 1’]) , float (comm[’y t 2’]) , float (comm[’y t 3’]) , float (comm[’

y t 4’]) , float (comm[’y t 5’]) , float (comm[’y t 6’]) , float (comm[’y t 7’])]

115

97

98 # Setup of the other variables
99 x0 = x1 0

100 v0 = v1
101

102 t = 0.0
103 deltaT = 0.05
104 scaleX = 2
105 scaleY = 5
106 c height = 9
107 c width = 20
108

109 x = x init
110 y = y init
111

112 update action = False
113 permanent = False
114 force crash = False
115

116 while True:
117 for event in pygame.event.get() :
118 if event.type == pygame.QUIT:
119 pygame.quit()
120 quit ()
121 if event.type == pygame.KEYDOWN and event.key == pygame.K SPACE:
122 update action = not update action
123

124 screen . fill ((255,255,255))
125 screen . blit (get image(’background.png’), (0, 0))
126

127 screen . blit (get image(’ car red .png’) , (x∗scaleX − c width/2, 218 − y∗scaleY − c height/2))
128

129 # Other vehicle
130 screen . blit (get image(’ car grey .png’) , ((x0 + t∗v0)∗scaleX − c width/2, 218 − 1.8∗scaleY −

c height/2))
131

132 # Display info
133 time label = time font. render(”%2.1fs”%t, 1, (0,0,0))
134 screen . blit (time label , (175, 35))
135

136 main vahicle label = myfont.render(”Main vehicle”, 1, (128,128,128))
137 screen . blit (main vahicle label , (325, 25))
138

139 x label = myfont.render(”x Position : %dm”%x, 1, (0,0,0))
140 screen . blit (x label , (325, 45))
141

142 y label = myfont.render(”y Position : %.2fm”%y, 1, (0,0,0))
143 screen . blit (y label , (325, 65))
144

145 other vahicle label = myfont.render(”Other vehicle”, 1, (128,128,128))
146 screen . blit (other vahicle label , (475, 25))
147

148 x label = myfont.render(”x Position : %dm”%(x0 + t∗v0), 1, (0,0,0))
149 screen . blit (x label , (475, 45))
150

151 y label = myfont.render(”y Position : 1.8m”, 1, (0,0,0))
152 screen . blit (y label , (475, 65))
153

154 if detect crash (x,y ,(x0 + t∗v0) ,1.8,4.8,1.9) == True or force crash == True:

116

155 render centered (screen , ”Crashed”, (0,0,0))
156 permanent = True
157

158 # Main vehicle
159 if update action == True and permanent == False:
160 if t < t end:
161 if type comm == 1:
162 x = x + curr v∗deltaT
163 elif type comm == 2:
164 curr t = t − t init
165 x = x init + (x coeffs [0]∗ curr t ∗∗2 + x coeffs [1]∗ curr t + x coeffs [2])
166 y = (y coeffs [0]∗ curr t ∗∗6 + y coeffs [1]∗ curr t ∗∗5 + y coeffs [2]∗ curr t ∗∗4 + y coeffs

[3]∗ curr t ∗∗3 + y coeffs [4]∗ curr t ∗∗2 + y coeffs [5]∗ curr t + y coeffs [6])
167

168 if t >= t end:
169 if crashed == True:
170 permanent = True
171 force crash = True
172 else :
173 try :
174 comm = next(reader)
175 except:
176 print (’Done’)
177 break
178

179 # Read the next command
180 t init = t
181 x init = x
182 y init = y
183 t end = int(comm[’t end’])
184 type comm = int(comm[’type’])
185 curr v = int(comm[’v’])
186 crashed = bool(int(comm[’crashed’]))
187 x coeffs = [float (comm[’x t 1’]) , float (comm[’x t 2’]) , float (comm[’x t 3’])]
188 y coeffs = [float (comm[’y t 1’]) , float (comm[’y t 2’]) , float (comm[’y t 3’]) , float (

comm[’y t 4’]) , float (comm[’y t 5’]) , float (comm[’y t 6’]) , float (comm[’y t 7’])]
189

190 if x >= 500 or t >= 30:
191 update action = False
192 permanent = True
193

194 t = t + deltaT
195

196 elif crashed == False and update action == False and permanent == False:
197 if x == 0:
198 render centered (screen , ”Press SPACE to start”, (0,0,0))
199 else :
200 render centered (screen , ”Press SPACE to continue”, (0,0,0))
201 elif crashed == False and permanent == True:
202 render centered (screen , ”Done”, (0,0,0))
203

204 pygame.display . flip ()
205 pygame.time.wait(int(1000∗deltaT/speed))
206

207 pygame.quit()

File A.14 get trace.py

1 # GET TRACE − Given a PRISM model, obtain a sample

117

2 # trace and modify it .
3

4 # Author: Francisco Girbal Eiras , MSc Computer Science
5 # University of Oxford, Department of Computer Science
6 # Email: francisco . eiras@cs .ox.ac.uk
7 # 14−May−2018; Last revision: 14−May−2018
8

9 import sys , os, subprocess , csv , argparse
10

11 parser=argparse.ArgumentParser(
12 description =’’’Given a PRISM model, obtain a sample trace and modify it . ’’’)
13 parser .add argument(’model.pm’, type=str, help=’The model from which to obtain the sample

execution (built using model generator.py). ’)
14 parser .add argument(’[v1] ’ , type=int, help=’ Initial velocity of the other vehicle . ’)
15 parser .add argument(’[x1 0] ’ , type=int, help=’ Initial position of the other vehicle . ’)
16 args=parser. parse args ()
17

18 cleaning up = False
19

20 v1 = int(sys .argv [2])
21 x1 0 = int(sys .argv [3])
22

23 # Construct the file
24 print (’Obtaining the sample path ... ’)
25 subprocess .run(”prism %s −simpath ’deadlock,sep=comma’ path1.txt &> /dev/null”%sys.argv[1],

shell=True)
26

27 # Read the generated text file
28 print (’Read the generated file and modify the trace file to become readable in simulation ... ’)
29

30 csvfile = open(’gen trace.csv ’ , ’w’)
31 fieldnames = [’t end’ , ’type’ , ’v’ , ’crashed’ , ’ lane ’ , ’ x t 1 ’ , ’ x t 2 ’ , ’ x t 3 ’ , ’ y t 1 ’ , ’ y t 2 ’ , ’

y t 3 ’ , ’ y t 4 ’ , ’ y t 5 ’ , ’ y t 6 ’ , ’ y t 7 ’]
32 writer = csv.DictWriter(csvfile , fieldnames=fieldnames)
33

34 writer . writeheader ()
35

36 next change lanes = False
37 curr v = 0
38 curr t = 0
39 curr x = 0
40

41 with open(’path1.txt ’) as csvfile :
42 reader = csv.DictReader(csvfile)
43 # Skip the first line
44 next(reader)
45 for row in reader :
46 if row[’ action ’] == ”Decision Making Monitoring” and row[”lC”] == ”true”:
47 next change lanes = True
48 curr v = int(row[’v’])
49 curr t = int(row[’ t ’])
50 curr x = int(row[’x’])
51

52 if row[’ action ’] == ”Control” and next change lanes == False:
53 if row[’crashed’] == ’false’ :
54 writer .writerow({ ’ t end’ : row[’ t ’], ’type’ : ’1’ , ’v’ : row[’v’], ’crashed’ : ’0’ , ’ lane ’

: row[’ lane ’], ’ x t 1 ’ : ’0’ , ’ x t 2 ’ : ’0’ , ’ x t 3 ’ : ’0’ , ’ y t 1 ’ : ’0’ , ’ y t 2 ’ : ’0’ , ’
y t 3 ’ : ’0’ , ’ y t 4 ’ : ’0’ , ’ y t 5 ’ : ’0’ , ’ y t 6 ’ : ’0’ , ’ y t 7 ’ : ’0’})

55 else :

118

56 writer .writerow({ ’ t end’ : row[’ t ’], ’type’ : ’1’ , ’v’ : row[’v’], ’crashed’ : ’1’ , ’ lane ’
: row[’ lane ’], ’ x t 1 ’ : ’0’ , ’ x t 2 ’ : ’0’ , ’ x t 3 ’ : ’0’ , ’ y t 1 ’ : ’0’ , ’ y t 2 ’ : ’0’ , ’
y t 3 ’ : ’0’ , ’ y t 4 ’ : ’0’ , ’ y t 5 ’ : ’0’ , ’ y t 6 ’ : ’0’ , ’ y t 7 ’ : ’0’})

57

58 if row[’ action ’] == ”Control” and next change lanes == True:
59 lane = int(row[’ lane ’])
60 o lane = 3 − lane
61 idx line = (2−lane)∗20∗20∗43 + (v1 − 15)∗20∗43 + (curr v − 15)∗43 + min(abs(x1 0 +

v1∗curr t − curr x), 43)
62

63 infile = open(”data/other table.csv”)
64 r = csv.DictReader(infile)
65 for i in range(idx line −1):
66 next(r)
67 this row = next(r)
68

69 if row[’crashed’] == ’false’ :
70 writer .writerow({ ’ t end’ : row[’ t ’], ’type’ : ’2’ , ’v’ : row[’v’], ’crashed’ : ’0’ , ’ lane ’

: o lane , ’ x t 1 ’ : this row [’p x(1) ’], ’ x t 2 ’ : this row [’p x(2) ’], ’ x t 3 ’ : this row [’p x
(3) ’], ’ y t 1 ’ : this row [’p y(1) ’], ’ y t 2 ’ : this row [’p y(2) ’], ’ y t 3 ’ : this row [’p y(3)
’], ’ y t 4 ’ : this row [’p y(4) ’], ’ y t 5 ’ : this row [’p y(5) ’], ’ y t 6 ’ : this row [’p y(6) ’],
’ y t 7 ’ : this row [’p y(7) ’]})

71 else :
72 writer .writerow({ ’ t end’ : row[’ t ’], ’type’ : ’2’ , ’v’ : row[’v’], ’crashed’ : ’1’ , ’ lane ’

: o lane , ’ x t 1 ’ : this row [’p x(1) ’], ’ x t 2 ’ : this row [’p x(2) ’], ’ x t 3 ’ : this row [’p x
(3) ’], ’ y t 1 ’ : this row [’p y(1) ’], ’ y t 2 ’ : this row [’p y(2) ’], ’ y t 3 ’ : this row [’p y(3)
’], ’ y t 4 ’ : this row [’p y(4) ’], ’ y t 5 ’ : this row [’p y(5) ’], ’ y t 6 ’ : this row [’p y(6) ’],
’ y t 7 ’ : this row [’p y(7) ’]})

73

74 next change lanes = False
75

76

77 if cleaning up == True:
78 print (’Cleaning up ... ’)
79 os.system(’rm path1.txt ’)

119

Appendix B

Code for the Advanced Driver
Assistance Systems

B.1 MDP Model Generators for Different ADAS

(Python)

B.1.1 Fully Compliant Drivers in Decision Making

File B.1 model generator.py

1 # MDP GENERATOR − Transform the tables into the MDP
2 # in order to perform multi−objective synthesis .
3 #
4 # VERSION:
5 # − decision making: lane change, deccelarate or do nothing
6 #
7 # Author: Francisco Girbal Eiras , MSc Computer Science
8 # University of Oxford, Department of Computer Science
9 # Email: francisco . eiras@cs .ox.ac.uk

10 # 26−Jun−2018; Last revision: 26−Jun−2018
11

12 import sys , csv , argparse , datetime
13

14 parser=argparse.ArgumentParser(
15 description =’’’Transform the tables into the MDP in order to perform multi−objective

synthesis . ’’’)
16 parser .add argument(’lane change table ’ , type=str, help=’Table for the lane change part of the

control module.’)
17 parser .add argument(’acc table ’ , type=str, help=’Table for the linear accelaration part of the

control module.’)
18 parser .add argument(’[v] ’ , type=int, default =29, help=’ Initial velocity of the vehicle . ’)
19 parser .add argument(’[v1] ’ , type=int, default =30, help=’ Initial velocity of the other vehicle .

’)
20 parser .add argument(’[x1 0] ’ , type=int, default =15, help=’ Initial position of the other

vehicle . ’)

120

21 parser .add argument(’−−filename [NAME]’, type=str, help=’Output name for the file generated. ’)
22 args=parser. parse args ()
23

24 if len(sys .argv) == 6:
25 f = open(”mdp model.pm”, ”w”)
26 else :
27 f = open(”%s.pm”%sys.argv[8], ”w”)
28

29 v = sys.argv [3]
30 v1 = sys.argv [4]
31 x1 0 = sys.argv [5]
32 if not (int (v) >= 15 and int(v) <= 34) or not (int(v1) >= 15 and int(v1) <= 34) or not (int(

x1 0) >= 1 and int(x1 0) <= 500):
33 raise ValueError(”Input out of range.”)
34

35 max control dist = ”43”
36 max dm dist = ”80”
37 crash dist = ”6”
38

39 now = datetime.datetime.now()
40

41 # Write the beginning of the file
42 f . write (”//MDP automatically built using mdp generator.py for v1 = %s (to alter this value ,

run the script again).\n”%v1)
43 f . write (”//Generated on %s.\n\n”%(now.strftime(”%d−%m−%Y at %H:%M”)))
44 f . write (”//Version: decision making: lane change, deccelarate or do nothing\n\n”)
45

46 f . write (”mdp\n\n”)
47 f . write (”const int length = 500; // road length\n”)
48 f . write (”const int max time = 30; // maximum time of experiment\n\n”)
49 f . write (”// Other vehicle\n”)
50 f . write (”const int v1 = %s; // do not alter this manually!\n”%v1)
51 f . write (”const int x1 0 = %s;\n\n”%x1 0)
52 f . write (”// Environment variables\n”)
53 f . write (”global t : [0.. max time] init 0; // time \n”)
54 f . write (”global crashed : bool init false ; \n\n”)
55 f . write (”// Vehicle controlled \n”)
56 f . write (”global actrState : [1..2] init 1; // active module: 1 = control (both cars) , 2 =

decision making + monitoring\n”)
57 f . write (”global lC : bool init false ; // lane changing occuring? \n”)
58 f . write (”global x : [0.. length] init 0;\n”)
59 f . write (”global v : [15..34] init %s;\n”%v)
60 f . write (”global a : [−2..3] init 0;\n”)
61 f . write (”global lane : [1..2] init 1;\n\n”)
62 f . write (”formula x1 = x1 0 + v1∗t;\n”)
63 f . write (”formula dist = x1>x?(x1 − x):(x − x1);\n”)
64 f . write (”formula positiveDist = (x < length)?x > x1:true;\n\n”)
65

66 # Decision making + monitoring module
67 f . write (”module Decision Making Monitoring\n\n”)
68 f . write (” // If a crash occurs , then nothing else can happen\n”)
69 f . write (” //[] actrState = 2 & crashed −> 1:(crashed’ = true);\n\n”)
70

71 f . write (” // If we are in lane 2, but behind the other vehicle , don’t try to pass\n”)
72 f . write (” [] actrState = 2 & !crashed & lane = 2 & positiveDist = false & x < length −> 1:(

actrState’ = 1);\n\n”)
73

74 f . write (” // If we are in lane 1, and no vehicle is in front , don’t change lanes\n”)
75 f . write (” [] actrState = 2 & !crashed & lane = 1 & positiveDist = true & x < length −> 1:(

121

actrState’ = 1);\n\n”)
76 f . write (” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & x < length −> 1:(lC’

= true) & (actrState ’ = 1);\n”)
77 f . write (” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & x < length −> 1:(lC’

= false) & (a’ = −1) & (actrState’ = 1);\n”)
78 f . write (” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & x < length −> 1:(

actrState’ = 1);\n\n”)
79

80 f . write (” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & x < length −> 1:(lC’
= true) & (actrState ’ = 1);\n”)

81 f . write (” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & x < length −> 1:(lC’
= false) & (a’ = −1) & (actrState’ = 1);\n”)

82 f . write (” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & x < length −> 1:(
actrState’ = 1);\n\n”)

83

84 f . write (”endmodule\n\n”)
85

86 # Control module
87 f . write (”module Control\n\n”)
88

89 f . write (” // If we are in lane 1, and no lane change was decided, continue forward (which
might result in crash)\n”)

90 f . write (” // The vehicle is behind the other driver (positiveDist = false , x < x1)\n”)
91 with open(sys.argv [2]) as csvfile :
92 reader = csv.DictReader(csvfile)
93 for row in reader :
94 if row[”d”] != max dm dist:
95 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a < 34 & v + a > 15 &
dist = %s & v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v + a) & (a’ = %s) & (
actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],row[”a”])

96 f . write (line)
97 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a >= 34 & dist = %s &
v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = %s) & (actrState’ = 2);\n” %
(crash dist,row[”d”],row[”v”],row[”a”])

98 f . write (line)
99 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a <= 15 & dist = %s &
v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = %s) & (actrState’ = 2);\n” %
(crash dist,row[”d”],row[”v”],row[”a”])

100 f . write (line)
101 elif row[”d”] == max dm dist:
102 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a < 34 & v + a > 15 &
dist >= %s & v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v + a) & (a’ = %s) & (
actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],row[”a”])

103 f . write (line)
104 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a >= 34 & dist >= %s
& v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = %s) & (actrState’ = 2);\n”
% (crash dist,row[”d”],row[”v”],row[”a”])

105 f . write (line)
106 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a <= 15 & dist >= %s
& v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = %s) & (actrState’ = 2);\n”
% (crash dist,row[”d”],row[”v”],row[”a”])

107 f . write (line)
108

122

109 f . write (”\n [] actrState = 1 & !crashed & !lC & lane = 1 & x > length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) >= %s −> 1:(x’ = length) & (t’ = t + 1) & (
actrState’ = 2);\n”%crash dist)

110 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x > length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s −> 1:(x’ = length) & (t’ = t + 1) & (crashed’
= true) & (actrState’ = 2);\n\n”%crash dist)

111

112 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s & v + a < 34 & v + a > 15 −> 1:(x’ = x + v
) & (t’ = t + 1) & (v’ = v + a) & (crashed’ = true) & (actrState’ = 2);\n”%crash dist)

113 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s & v + a >= 34 −> 1:(x’ = x + v) & (t’ = t
+ 1) & (v’ = 34) & (crashed’ = true) & (actrState’ = 2);\n”%crash dist)

114 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s & v + a <= 15 −> 1:(x’ = x + v) & (t’ = t
+ 1) & (v’ = 15) & (crashed’ = true) & (actrState’ = 2);\n”%crash dist)

115

116 f . write (” // The vehicle is in front of the other driver (positiveDist = true, x > x1)\n”)
117 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &

positiveDist = true & v + a < 34 & v + a > 15 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v
+ a) & (a’ = 0) & (actrState’ = 2);\n”)

118 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = true & v + a >= 34 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (
actrState’ = 2);\n”)

119 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = true & v + a <= 15 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (
actrState’ = 2);\n\n”)

120

121 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x > length − v & t < max time &
positiveDist = true −> 1:(x’ = length) & (t’ = t + 1) & (actrState’ = 2);\n\n”)

122

123 f . write (” // If we are in lane 2, and no lane change was decided, continue forward\n”)
124 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v

+ a < 34 & v + a > 15 & positiveDist = true −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v +
a) & (a’ = 0) & (actrState’ = 2);\n”)

125 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a >= 34 & positiveDist = true −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = 0) &
(actrState’ = 2);\n”)

126 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a <= 15 & positiveDist = true −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = 0) &
(actrState’ = 2);\n\n”)

127

128 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a < 34 & v + a > 15 & positiveDist = false −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v +
a) & (a’ = 0) & (actrState’ = 2);\n”)

129 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a >= 34 & positiveDist = false −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = 0)
& (actrState’ = 2);\n”)

130 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a <= 15 & positiveDist = false −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = 0)
& (actrState’ = 2);\n\n”)

131

132 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x > length − v & t < max time & v +
a < 34 & v + a > 15 −> 1:(x’ = length) & (t’ = t + 1) & (v’ = v + a) & (actrState’ = 2);\

n”)
133 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x > length − v & t < max time & v +

a >= 34 −> 1:(x’ = length) & (t’ = t + 1) & (v’ = 34) & (actrState’ = 2);\n”)
134 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x > length − v & t < max time & v +

a <= 15 −> 1:(x’ = length) & (t’ = t + 1) & (v’ = 15) & (actrState’ = 2);\n\n”)

123

135

136 with open(sys.argv [1]) as csvfile :
137 reader = csv.DictReader(csvfile)
138 for row in reader :
139 probCrash = float(row[”Acc?”])
140

141 if probCrash != 0 and probCrash != 1:
142 if row[”d”] != max control dist and row[”vi2”] == v1:
143 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = t + %s) & (a’ = 0) & (
lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”
delta x1”],row[”delta t”], probCrash,1−probCrash,row[”delta x1”],row[”vf1”], row[” delta t ”],
str (3 − int(row[”o lane”])))

144 f . write (line)
145 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = t + %s) & (a’ = 0) & (
lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”], row[
”delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”],row[” delta t ”], str (3 − int(row
[”o lane”])))

146 f . write (line)
147 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = max time) & (a’ = 0)
& (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],
row[”delta x1”],row[” delta t ”], probCrash,1−probCrash,row[”delta x1”],row[”vf1”], str (3 − int
(row[”o lane”])))

148 f . write (line)
149 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = max time) & (a’ = 0) &
(lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],
row[”delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”], str (3 − int(row[”o lane”])
))

150 f . write (line)
151 elif row[”d”] == max control dist and row[”vi2”] == v1:
152 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’
= false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = t + %s) & (a’ = 0)

& (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],
row[”delta x1”],row[”delta t”],probCrash,1−probCrash,row[”delta x1”],row[”vf1”], row[” delta t
”], str (3 − int(row[”o lane”])))

153 f . write (line)
154 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = t + %s) & (a’ = 0) & (
lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”
delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”],row[” delta t ”], str (3 − int(row[
”o lane”])))

155 f . write (line)
156 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’
= false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = max time) & (a’ =
0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”
],row[”delta x1”],row[”delta t”], probCrash,1−probCrash,row[”delta x1”],row[”vf1”], str (3 −
int(row[”o lane”])))

157 f . write (line)
158 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

124

length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = max time) & (a’ = 0) &
(lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”], row[
”delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”], str (3 − int(row[”o lane”])))

159 f . write (line)
160 elif probCrash == 0:
161 if row[”d”] != max control dist and row[”vi2”] == v1:
162 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %s)
& (t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”],row[”vf1”], row[”
delta t ”], str (3 − int(row[”o lane”])))

163 f . write (line)
164 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) &
(t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”], row[”vf1”], row[” delta t ”], str (3 −
int(row[”o lane”])))

165 f . write (line)
166 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) &
(t’ = max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”], row[”vf1”], str (3 −
int(row[”o lane”])))

167 f . write (line)
168 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’
= max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”

o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[” delta t ”], row[”vf1”], str (3 − int(row[”
o lane”])))

169 f . write (line)
170 elif row[”d”] == max control dist and row[”vi2”] == v1:
171 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %
s) & (t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[
”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”],row[”vf1”],row[”
delta t ”], str (3 − int(row[”o lane”])))

172 f . write (line)
173 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) &
(t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”vf1”], row[” delta t ”], str (3 −
int(row[”o lane”])))

174 f . write (line)
175 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %s)
& (t’ = max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[

”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”],row[”vf1”], str (3
− int(row[”o lane”])))

176 f . write (line)
177 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t
’ = max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”], row[”vf1”], str (3 − int(row[”
o lane”])))

178 f . write (line)
179 else :
180 if row[”d”] != max control dist and row[”vi2”] == v1:
181 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

125

length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

182 f . write (line)
183 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false
);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

184 f . write (line)
185 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false)
;\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

186 f . write (line)
187 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false)
;\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

188 f . write (line)
189 elif row[”d”] == max control dist and row[”vi2”] == v1:
190 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

191 f . write (line)
192 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

193 f . write (line)
194 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

195 f . write (line)
196 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false)
;\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

197 f . write (line)
198

199

200 f . write (”\nendmodule”)
201

202 f . close ()

B.1.2 Partially Compliant Drivers in Decision Making

File B.2 model generator.py

1 # MDP GENERATOR − Transform the tables into the MDP
2 # in order to perform multi−objective synthesis .
3 #
4 # VERSION:
5 # − imperfect decision making (gamma)
6 #
7 # Author: Francisco Girbal Eiras , MSc Computer Science
8 # University of Oxford, Department of Computer Science
9 # Email: francisco . eiras@cs .ox.ac.uk

10 # 29−Jun−2018; Last revision: 29−Jun−2018
11

12 import sys , csv , argparse , datetime
13

14 parser=argparse.ArgumentParser(
15 description =’’’Transform the tables into the MDP in order to perform multi−objective

126

synthesis . ’’’)
16 parser .add argument(’lane change table ’ , type=str, help=’Table for the lane change part of the

control module.’)
17 parser .add argument(’acc table ’ , type=str, help=’Table for the linear accelaration part of the

control module.’)
18 parser .add argument(’dm table’, type=str, help=’Table for the decision making module.’)
19 parser .add argument(’ driver type ’ , type=int, default =2, help=’1 = aggressive, 2 = average, 3 =

cautious’)
20 parser .add argument(’v’, type=str, help=’ Initial velocity of the vehicle . ’)
21 parser .add argument(’v1’, type=str, help=’ Initial velocity of the other vehicle . ’)
22 parser .add argument(’x1 0’, type=str, help=’ Initial position of the other vehicle . ’)
23 parser .add argument(’−−filename’, ’−f’, type=str, default =”mdp model”, help=’Output name for

the file generated.’)
24 args=parser. parse args ()
25

26 f = open(”%s.pm”%args.filename, ”w”)
27

28 v = args.v
29 v1 = args.v1
30 x1 0 = args.x1 0
31 driver type = args. driver type
32

33 if not (int (v) >= 15 and int(v) <= 34) or not (int(v1) >= 15 and int(v1) <= 34) or not (int(
x1 0) >= 1 and int(x1 0) <= 500) or not (driver type >= 1 and driver type <= 3):

34 raise ValueError(”Input out of range.”)
35

36 driver type = str(driver type)
37 max control dist = ”43”
38 max dm dist = ”80”
39 crash dist = ”6”
40 gamma = 0.10
41

42 now = datetime.datetime.now()
43

44 # Write the beginning of the file
45 f . write (”//MDP automatically built using mdp generator.py for v1 = %s (to alter this value ,

run the script again).\n”%v1)
46 f . write (”//Generated on %s.\n\n”%(now.strftime(”%d−%m−%Y at %H:%M”)))
47 f . write (”//Version: imperfect decision making, gamma = %.2f\n\n”%gamma)
48

49 f . write (”mdp\n\n”)
50 f . write (”const int length = 500; // road length\n”)
51 f . write (”const int max time = 35; // maximum time of experiment\n”)
52 f . write (”const double gamma = %.2f; // gamma value\n\n”%gamma)
53 f . write (”// Other vehicle\n”)
54 f . write (”const int v1 = %s; // do not alter this manually!\n”%v1)
55 f . write (”const int x1 0 = %s;\n\n”%x1 0)
56 f . write (”// Environment variables\n”)
57 f . write (”global t : [0.. max time] init 0; // time \n”)
58 f . write (”global crashed : bool init false ; \n\n”)
59 f . write (”// Vehicle controlled \n”)
60 f . write (”global actrState : [1..2] init 1; // active module: 1 = control (both cars) , 2 =

decision making + monitoring\n”)
61 f . write (”global lC : bool init false ; // lane changing occuring? \n”)
62 f . write (”global x : [0.. length] init 0;\n”)
63 f . write (”global v : [15..34] init %s;\n”%v)
64 f . write (”global a : [−3..3] init 0;\n”)
65 f . write (”global lane : [1..2] init 1;\n\n”)
66 f . write (”formula x1 = x1 0 + v1∗t;\n”)

127

67 f . write (”formula dist = x1>x?(x1 − x):(x − x1);\n”)
68 f . write (”formula positiveDist = (x < length)?x > x1:true;\n\n”)
69

70 # Decision making + monitoring module
71 f . write (”module Decision Making Monitoring\n\n”)
72 f . write (” // If a crash occurs , then nothing else can happen\n”)
73 f . write (” //[] actrState = 2 & crashed −> 1:(crashed’ = true);\n\n”)
74

75 f . write (” // If we are in lane 2, but behind the other vehicle , don’t try to pass\n”)
76 f . write (” [] actrState = 2 & !crashed & lane = 2 & positiveDist = false & x < length −> 1:(

actrState’ = 1);\n\n”)
77

78 f . write (” // If we are in lane 1, and no vehicle is in front , don’t change lanes\n”)
79 f . write (” [] actrState = 2 & !crashed & lane = 1 & positiveDist = true & x < length −> 1:(

actrState’ = 1);\n\n”)
80

81 with open(args.dm table) as csvfile :
82 reader = csv.DictReader(csvfile)
83 for row in reader :
84 # should we change from lane 1 to lane 2? it ’ s based on delta crash ! (and the ADAS)
85 if row[”type”] == driver type and row[”lane”] == ”1” and row[”d”] != max dm dist:
86 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist = %s & v

= %s & x < length −> gamma:(lC’ = true) & (actrState’ = 1) + (1−gamma)∗%s:(actrState’
= 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”

v”],row[”P lC”],row[”P nlC”])
87 f . write (line)
88 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist = %s & v

= %s & x < length −> gamma:(lC’ = false) & (a’ = −1) & (actrState’ = 1) + (1−gamma)
∗%s:(actrState’ = 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” %
(row[”d”],row[”v”],row[”P lC”],row[”P nlC”])

89 f . write (line)
90 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist = %s & v

= %s & x < length −> gamma:(actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ =
true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”v”],row[”P lC”

],row[”P nlC”])
91 f . write (line)
92 elif row[”type”] == driver type and row[”lane”] == ”1” and row[”d”] == max dm dist:
93 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist >= %s &

v = %s & x < length −> gamma:(lC’ = true) & (actrState’ = 1) + (1−gamma)∗%s:(
actrState’ = 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[
”d”],row[”v”],row[”P lC”],row[”P nlC”])

94 f . write (line)
95 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist >= %s &

v = %s & x < length −> gamma:(lC’ = false) & (a’ = −1) & (actrState’ = 1) + (1−gamma)
∗%s:(actrState’ = 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” %
(row[”d”],row[”v”],row[”P lC”],row[”P nlC”])

96 f . write (line)
97 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist >= %s &

v = %s & x < length −> gamma:(actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (lC’
= true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”v”],row[”
P lC”],row[”P nlC”])

98 f . write (line)
99

100 # should we go back to lane 1 from lane 2? it ’ s based on the distance we are at! (and the
ADAS)

101 if row[”type”] == driver type and row[”lane”] == ”2” and row[”d”] != max dm dist:
102 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist = %s & x

< length −> gamma:(lC’ = true) & (actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (lC
’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”P lC”],row[

128

”P nlC”])
103 f . write (line)
104 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist = %s & x

< length −> gamma:(lC’ = false) & (a’ = −1) & (actrState’ = 1) + (1−gamma)∗%s:(
actrState’ = 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[
”d”],row[”P lC”],row[”P nlC”])

105 f . write (line)
106 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist = %s & x

< length −> gamma:(actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = true) +
(1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”P lC”],row[”P nlC”])

107 f . write (line)
108 elif row[”type”] == driver type and row[”lane”] == ”2” and row[”d”] == max dm dist:
109 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist >= %s &

x < length −> gamma:(lC’ = true) & (actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (
lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”P lC”],
row[”P nlC”])

110 f . write (line)
111 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist >= %s &

x < length −> gamma:(lC’ = false) & (a’ = −1) & (actrState’ = 1) + (1−gamma)∗%s:(
actrState’ = 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[
”d”],row[”P lC”],row[”P nlC”])

112 f . write (line)
113 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist >= %s &

x < length −> gamma:(actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = true) +
(1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”P lC”],row[”P nlC”])

114 f . write (line)
115

116 # f.write(” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & x < length −> 1:(
lC’ = true) & (actrState ’ = 1);\n”)

117 # f.write(” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & x < length −> 1:(
lC’ = false) & (a’ = −1) & (actrState’ = 1);\n”)

118 # f.write(” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & x < length −> 1:(
actrState’ = 1);\n\n”)

119

120 # f.write(” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & x < length −> 1:(
lC’ = true) & (actrState ’ = 1);\n”)

121 # f.write(” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & x < length −> 1:(
lC’ = false) & (a’ = −1) & (actrState’ = 1);\n”)

122 # f.write(” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & x < length −> 1:(
actrState’ = 1);\n\n”)

123

124 f . write (”endmodule\n\n”)
125

126 # Control module
127 f . write (”module Control\n\n”)
128

129 f . write (” // If we are in lane 1, and no lane change was decided, continue forward (which
might result in crash)\n”)

130 f . write (” // The vehicle is behind the other driver (positiveDist = false , x < x1)\n”)
131 with open(args. acc table) as csvfile :
132 reader = csv.DictReader(csvfile)
133 for row in reader :
134 if row[”d”] != max dm dist:
135 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a < 34 & v + a > 15 &
dist = %s & v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v + a) & (a’ = %s) & (
actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],row[”a”])

136 f . write (line)
137 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

129

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a >= 34 & dist = %s &
v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = %s) & (actrState’ = 2);\n” %
(crash dist,row[”d”],row[”v”],row[”a”])

138 f . write (line)
139 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a <= 15 & dist = %s &
v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = %s) & (actrState’ = 2);\n” %
(crash dist,row[”d”],row[”v”],row[”a”])

140 f . write (line)
141 elif row[”d”] == max dm dist:
142 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a < 34 & v + a > 15 &
dist >= %s & v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v + a) & (a’ = %s) & (
actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],row[”a”])

143 f . write (line)
144 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a >= 34 & dist >= %s
& v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = %s) & (actrState’ = 2);\n”
% (crash dist,row[”d”],row[”v”],row[”a”])

145 f . write (line)
146 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a <= 15 & dist >= %s
& v = %s −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = %s) & (actrState’ = 2);\n”
% (crash dist,row[”d”],row[”v”],row[”a”])

147 f . write (line)
148

149 f . write (”\n [] actrState = 1 & !crashed & !lC & lane = 1 & x > length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) >= %s −> 1:(x’ = length) & (t’ = t + 1) & (
actrState’ = 2);\n”%crash dist)

150 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x > length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s −> 1:(x’ = length) & (t’ = t + 1) & (crashed’
= true) & (actrState’ = 2);\n\n”%crash dist)

151

152 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s & v + a < 34 & v + a > 15 −> 1:(x’ = x + v
) & (t’ = t + 1) & (v’ = v + a) & (crashed’ = true) & (actrState’ = 2);\n”%crash dist)

153 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s & v + a >= 34 −> 1:(x’ = x + v) & (t’ = t
+ 1) & (v’ = 34) & (crashed’ = true) & (actrState’ = 2);\n”%crash dist)

154 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s & v + a <= 15 −> 1:(x’ = x + v) & (t’ = t
+ 1) & (v’ = 15) & (crashed’ = true) & (actrState’ = 2);\n”%crash dist)

155

156 f . write (” // The vehicle is in front of the other driver (positiveDist = true, x > x1)\n”)
157 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &

positiveDist = true & v + a < 34 & v + a > 15 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v
+ a) & (a’ = 0) & (actrState’ = 2);\n”)

158 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = true & v + a >= 34 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (
actrState’ = 2);\n”)

159 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = true & v + a <= 15 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (
actrState’ = 2);\n\n”)

160

161 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x > length − v & t < max time &
positiveDist = true −> 1:(x’ = length) & (t’ = t + 1) & (actrState’ = 2);\n\n”)

162

163 f . write (” // If we are in lane 2, and no lane change was decided, continue forward\n”)
164 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v

130

+ a < 34 & v + a > 15 & positiveDist = true −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v +
a) & (a’ = 0) & (actrState’ = 2);\n”)

165 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a >= 34 & positiveDist = true −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = 0) &
(actrState’ = 2);\n”)

166 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a <= 15 & positiveDist = true −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = 0) &
(actrState’ = 2);\n\n”)

167

168 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a < 34 & v + a > 15 & positiveDist = false −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v +
a) & (a’ = 0) & (actrState’ = 2);\n”)

169 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a >= 34 & positiveDist = false −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = 0)
& (actrState’ = 2);\n”)

170 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a <= 15 & positiveDist = false −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = 0)
& (actrState’ = 2);\n\n”)

171

172 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x > length − v & t < max time & v +
a < 34 & v + a > 15 −> 1:(x’ = length) & (t’ = t + 1) & (v’ = v + a) & (actrState’ = 2);\

n”)
173 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x > length − v & t < max time & v +

a >= 34 −> 1:(x’ = length) & (t’ = t + 1) & (v’ = 34) & (actrState’ = 2);\n”)
174 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x > length − v & t < max time & v +

a <= 15 −> 1:(x’ = length) & (t’ = t + 1) & (v’ = 15) & (actrState’ = 2);\n\n”)
175

176 with open(args. lane change table) as csvfile :
177 reader = csv.DictReader(csvfile)
178 for row in reader :
179 probCrash = float(row[”Acc?”])
180

181 if probCrash != 0 and probCrash != 1:
182 if row[”d”] != max control dist and row[”vi2”] == v1:
183 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = t + %s) & (a’ = 0) & (
lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”
delta x1”],row[”delta t”], probCrash,1−probCrash,row[”delta x1”],row[”vf1”], row[” delta t ”],
str (3 − int(row[”o lane”])))

184 f . write (line)
185 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = t + %s) & (a’ = 0) & (
lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”], row[
”delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”],row[” delta t ”], str (3 − int(row
[”o lane”])))

186 f . write (line)
187 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = max time) & (a’ = 0)
& (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],
row[”delta x1”],row[” delta t ”], probCrash,1−probCrash,row[”delta x1”],row[”vf1”], str (3 − int
(row[”o lane”])))

188 f . write (line)
189 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = max time) & (a’ = 0) &
(lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],

131

row[”delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”], str (3 − int(row[”o lane”])
))

190 f . write (line)
191 elif row[”d”] == max control dist and row[”vi2”] == v1:
192 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’
= false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = t + %s) & (a’ = 0)

& (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],
row[”delta x1”],row[”delta t”],probCrash,1−probCrash,row[”delta x1”],row[”vf1”], row[” delta t
”], str (3 − int(row[”o lane”])))

193 f . write (line)
194 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = t + %s) & (a’ = 0) & (
lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”
delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”],row[” delta t ”], str (3 − int(row[
”o lane”])))

195 f . write (line)
196 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’
= false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = max time) & (a’ =
0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”
],row[”delta x1”],row[”delta t”], probCrash,1−probCrash,row[”delta x1”],row[”vf1”], str (3 −
int(row[”o lane”])))

197 f . write (line)
198 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = max time) & (a’ = 0) &
(lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”], row[
”delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”], str (3 − int(row[”o lane”])))

199 f . write (line)
200 elif probCrash == 0:
201 if row[”d”] != max control dist and row[”vi2”] == v1:
202 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %s)
& (t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”],row[”vf1”], row[”
delta t ”], str (3 − int(row[”o lane”])))

203 f . write (line)
204 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) &
(t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”], row[”vf1”], row[” delta t ”], str (3 −
int(row[”o lane”])))

205 f . write (line)
206 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) &
(t’ = max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”], row[”vf1”], str (3 −
int(row[”o lane”])))

207 f . write (line)
208 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’
= max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”

o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[” delta t ”], row[”vf1”], str (3 − int(row[”
o lane”])))

209 f . write (line)
210 elif row[”d”] == max control dist and row[”vi2”] == v1:
211 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

132

<= length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %
s) & (t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[
”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”],row[”vf1”],row[”
delta t ”], str (3 − int(row[”o lane”])))

212 f . write (line)
213 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) &
(t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”vf1”], row[” delta t ”], str (3 −
int(row[”o lane”])))

214 f . write (line)
215 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %s)
& (t’ = max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[

”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”],row[”vf1”], str (3
− int(row[”o lane”])))

216 f . write (line)
217 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t
’ = max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”], row[”vf1”], str (3 − int(row[”
o lane”])))

218 f . write (line)
219 else :
220 if row[”d”] != max control dist and row[”vi2”] == v1:
221 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

222 f . write (line)
223 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false
);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

224 f . write (line)
225 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false)
;\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

226 f . write (line)
227 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false)
;\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

228 f . write (line)
229 elif row[”d”] == max control dist and row[”vi2”] == v1:
230 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

231 f . write (line)
232 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

233 f . write (line)
234 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

235 f . write (line)
236 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false)
;\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

237 f . write (line)
238

133

239

240 f . write (”\nendmodule”)
241

242 f . close ()

B.1.3 Additive Linear Control

File B.3 model generator.py

1 # MDP GENERATOR − Transform the tables into the MDP
2 # in order to perform multi−objective synthesis .
3 #
4 # VERSION:
5 # − imperfect decision making (gamma)
6 # − linear acceleration assistance
7 #
8 # Author: Francisco Girbal Eiras , MSc Computer Science
9 # University of Oxford, Department of Computer Science

10 # Email: francisco . eiras@cs .ox.ac.uk
11 # 1−Jul−2018; Last revision: 11−Jul−2018
12

13 import sys , csv , argparse , datetime
14

15 parser=argparse.ArgumentParser(
16 description =’’’Transform the tables into the MDP in order to perform multi−objective

synthesis . ’’’)
17 parser .add argument(’lane change table ’ , type=str, help=’Table for the lane change part of the

control module.’)
18 parser .add argument(’acc table ’ , type=str, help=’Table for the linear accelaration part of the

control module.’)
19 parser .add argument(’dm table’, type=str, help=’Table for the decision making module.’)
20 parser .add argument(’ driver type ’ , type=int, default =2, help=’1 = aggressive, 2 = average, 3 =

cautious’)
21 parser .add argument(’v’, type=str, help=’ Initial velocity of the vehicle . ’)
22 parser .add argument(’v1’, type=str, help=’ Initial velocity of the other vehicle . ’)
23 parser .add argument(’x1 0’, type=str, help=’ Initial position of the other vehicle . ’)
24 parser .add argument(’−−filename’, ’−f’, type=str, default =”mdp model”, help=’Output name for

the file generated.’)
25 args=parser. parse args ()
26

27 f = open(”%s.pm”%args.filename, ”w”)
28

29 v = args.v
30 v1 = args.v1
31 x1 0 = args.x1 0
32 driver type = args. driver type
33

34 if not (int (v) >= 15 and int(v) <= 34) or not (int(v1) >= 15 and int(v1) <= 34) or not (int(
x1 0) >= 1 and int(x1 0) <= 500) or not (driver type >= 1 and driver type <= 3):

35 raise ValueError(”Input out of range.”)
36

37 driver type = str(driver type)
38 max control dist = ”43”
39 max dm dist = ”80”
40 crash dist = ”6”
41 gamma = 0.10
42

134

43 now = datetime.datetime.now()
44

45 # Write the beginning of the file
46 f . write (”//MDP automatically built using mdp generator.py for v1 = %s (to alter this value ,

run the script again).\n”%v1)
47 f . write (”//Generated on %s.\n\n”%(now.strftime(”%d−%m−%Y at %H:%M”)))
48 f . write (”//Version: imperfect decision making, gamma = %.2f; linear acceleration assistance \n\

n”%gamma)
49

50 f . write (”mdp\n\n”)
51 f . write (”const int length = 500; // road length\n”)
52 f . write (”const int max time = 35; // maximum time of experiment\n”)
53 f . write (”const double gamma = %.2f; // gamma value\n\n”%gamma)
54 f . write (”// Other vehicle\n”)
55 f . write (”const int v1 = %s; // do not alter this manually!\n”%v1)
56 f . write (”const int x1 0 = %s;\n\n”%x1 0)
57 f . write (”// Environment variables\n”)
58 f . write (”global t : [0.. max time] init 0; // time \n”)
59 f . write (”global crashed : bool init false ; \n\n”)
60 f . write (”// Vehicle controlled \n”)
61 f . write (”global actrState : [1..2] init 1; // active module: 1 = control (both cars) , 2 =

decision making + monitoring\n”)
62 f . write (”global lC : bool init false ; // lane changing occuring? \n”)
63 f . write (”global x : [0.. length] init 0;\n”)
64 f . write (”global v : [15..34] init %s;\n”%v)
65 f . write (”global a : [−3..3] init 0;\n”)
66 f . write (”global lane : [1..2] init 1;\n\n”)
67 f . write (”formula x1 = x1 0 + v1∗t;\n”)
68 f . write (”formula dist = x1>x?(x1 − x):(x − x1);\n”)
69 f . write (”formula positiveDist = (x < length)?x > x1:true;\n\n”)
70

71 # Decision making + monitoring module
72 f . write (”module Decision Making Monitoring\n\n”)
73 f . write (” // If a crash occurs , then nothing else can happen\n”)
74 f . write (” //[] actrState = 2 & crashed −> 1:(crashed’ = true);\n\n”)
75

76 f . write (” // If we are in lane 2, but behind the other vehicle , don’t try to pass\n”)
77 f . write (” [] actrState = 2 & !crashed & lane = 2 & positiveDist = false & x < length −> 1:(

actrState’ = 1);\n\n”)
78

79 f . write (” // If we are in lane 1, and no vehicle is in front , don’t change lanes\n”)
80 f . write (” [] actrState = 2 & !crashed & lane = 1 & positiveDist = true & x < length −> 1:(

actrState’ = 1);\n\n”)
81

82 with open(args.dm table) as csvfile :
83 reader = csv.DictReader(csvfile)
84 for row in reader :
85 # should we change from lane 1 to lane 2? it ’ s based on delta crash ! (and the ADAS)
86 if row[”type”] == driver type and row[”lane”] == ”1” and row[”d”] != max dm dist:
87 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist = %s & v

= %s & x < length −> gamma:(lC’ = true) & (actrState’ = 1) + (1−gamma)∗%s:(actrState’
= 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”

v”],row[”P lC”],row[”P nlC”])
88 f . write (line)
89 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist = %s & v

= %s & x < length −> gamma:(lC’ = false) & (a’ = −1) & (actrState’ = 1) + (1−gamma)
∗%s:(actrState’ = 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” %
(row[”d”],row[”v”],row[”P lC”],row[”P nlC”])

90 f . write (line)

135

91 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist = %s & v
= %s & x < length −> gamma:(actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ =
true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”v”],row[”P lC”

],row[”P nlC”])
92 f . write (line)
93 elif row[”type”] == driver type and row[”lane”] == ”1” and row[”d”] == max dm dist:
94 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist >= %s &

v = %s & x < length −> gamma:(lC’ = true) & (actrState’ = 1) + (1−gamma)∗%s:(
actrState’ = 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[
”d”],row[”v”],row[”P lC”],row[”P nlC”])

95 f . write (line)
96 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist >= %s &

v = %s & x < length −> gamma:(lC’ = false) & (a’ = −1) & (actrState’ = 1) + (1−gamma)
∗%s:(actrState’ = 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” %
(row[”d”],row[”v”],row[”P lC”],row[”P nlC”])

97 f . write (line)
98 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist >= %s &

v = %s & x < length −> gamma:(actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (lC’
= true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”v”],row[”
P lC”],row[”P nlC”])

99 f . write (line)
100

101 # should we go back to lane 1 from lane 2? it ’ s based on the distance we are at! (and the
ADAS)

102 if row[”type”] == driver type and row[”lane”] == ”2” and row[”d”] != max dm dist:
103 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist = %s & x

< length −> gamma:(lC’ = true) & (actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (lC
’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”P lC”],row[
”P nlC”])

104 f . write (line)
105 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist = %s & x

< length −> gamma:(lC’ = false) & (a’ = −1) & (actrState’ = 1) + (1−gamma)∗%s:(
actrState’ = 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[
”d”],row[”P lC”],row[”P nlC”])

106 f . write (line)
107 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist = %s & x

< length −> gamma:(actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = true) +
(1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”P lC”],row[”P nlC”])

108 f . write (line)
109 elif row[”type”] == driver type and row[”lane”] == ”2” and row[”d”] == max dm dist:
110 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist >= %s &

x < length −> gamma:(lC’ = true) & (actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (
lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”P lC”],
row[”P nlC”])

111 f . write (line)
112 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist >= %s &

x < length −> gamma:(lC’ = false) & (a’ = −1) & (actrState’ = 1) + (1−gamma)∗%s:(
actrState’ = 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[
”d”],row[”P lC”],row[”P nlC”])

113 f . write (line)
114 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist >= %s &

x < length −> gamma:(actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = true) +
(1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”P lC”],row[”P nlC”])

115 f . write (line)
116

117 # f.write(” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & x < length −> 1:(
lC’ = true) & (actrState ’ = 1);\n”)

118 # f.write(” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & x < length −> 1:(
lC’ = false) & (a’ = −1) & (actrState’ = 1);\n”)

136

119 # f.write(” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & x < length −> 1:(
actrState’ = 1);\n\n”)

120

121 # f.write(” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & x < length −> 1:(
lC’ = true) & (actrState ’ = 1);\n”)

122 # f.write(” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & x < length −> 1:(
lC’ = false) & (a’ = −1) & (actrState’ = 1);\n”)

123 # f.write(” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & x < length −> 1:(
actrState’ = 1);\n\n”)

124

125 f . write (”endmodule\n\n”)
126

127 # Control module
128 f . write (”module Control\n\n”)
129

130 a vals = [−1, 0, 1]
131

132 f . write (” // If we are in lane 1, and no lane change was decided, continue forward (which
might result in crash)\n”)

133 f . write (” // The vehicle is behind the other driver (positiveDist = false , x < x1)\n”)
134 with open(args. acc table) as csvfile :
135 reader = csv.DictReader(csvfile)
136 for row in reader :
137 if row[”d”] != max dm dist:
138 for delta a in a vals :
139 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a < 34 & v + a > 15 &
dist = %s & v = %s & %s + %d <= 3 & %s + %d >= −3 −> 1:(x’ = x + v) & (t’ = t +
1) & (v’ = v + a) & (a’ = %s + %d) & (actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],
row[”a”],delta a,row[”a”],delta a,row[”a”],delta a)

140 f . write (line)
141 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a >= 34 & dist = %s &
v = %s & %s + %d <= 3 & %s + %d >= −3 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34)
& (a’ = %s + %d) & (actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],row[”a”],delta a,

row[”a”],delta a,row[”a”],delta a)
142 f . write (line)
143 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a <= 15 & dist = %s &
v = %s & %s + %d <= 3 & %s + %d >= −3 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15)
& (a’ = %s + %d) & (actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],row[”a”],delta a,

row[”a”],delta a,row[”a”],delta a)
144 f . write (line)
145 elif row[”d”] == max dm dist:
146 for delta a in a vals :
147 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a < 34 & v + a > 15 &
dist >= %s & v = %s & %s + %d <= 3 & %s + %d >= −3 −> 1:(x’ = x + v) & (t’ = t +
1) & (v’ = v + a) & (a’ = %s + %d) & (actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],
row[”a”],delta a,row[”a”],delta a,row[”a”],delta a)

148 f . write (line)
149 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a >= 34 & dist >= %s
& v = %s & %s + %d <= 3 & %s + %d >= −3 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ =
34) & (a’ = %s + %d) & (actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],row[”a”],delta a
,row[”a”],delta a,row[”a”],delta a)

150 f . write (line)
151 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a <= 15 & dist >= %s

137

& v = %s & %s + %d <= 3 & %s + %d >= −3 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ =
15) & (a’ = %s + %d) & (actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],row[”a”],delta a
,row[”a”],delta a,row[”a”],delta a)

152 f . write (line)
153

154

155 f . write (”\n [] actrState = 1 & !crashed & !lC & lane = 1 & x > length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) >= %s −> 1:(x’ = length) & (t’ = t + 1) & (
actrState’ = 2);\n”%crash dist)

156 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x > length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s −> 1:(x’ = length) & (t’ = t + 1) & (crashed’
= true) & (actrState’ = 2);\n\n”%crash dist)

157

158 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s & v + a < 34 & v + a > 15 −> 1:(x’ = x + v
) & (t’ = t + 1) & (v’ = v + a) & (crashed’ = true) & (actrState’ = 2);\n”%crash dist)

159 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s & v + a >= 34 −> 1:(x’ = x + v) & (t’ = t
+ 1) & (v’ = 34) & (crashed’ = true) & (actrState’ = 2);\n”%crash dist)

160 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s & v + a <= 15 −> 1:(x’ = x + v) & (t’ = t
+ 1) & (v’ = 15) & (crashed’ = true) & (actrState’ = 2);\n”%crash dist)

161

162 f . write (” // The vehicle is in front of the other driver (positiveDist = true, x > x1)\n”)
163 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &

positiveDist = true & v + a < 34 & v + a > 15 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v
+ a) & (a’ = 0) & (actrState’ = 2);\n”)

164 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = true & v + a >= 34 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (
actrState’ = 2);\n”)

165 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = true & v + a <= 15 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (
actrState’ = 2);\n\n”)

166

167 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x > length − v & t < max time &
positiveDist = true −> 1:(x’ = length) & (t’ = t + 1) & (actrState’ = 2);\n\n”)

168

169 f . write (” // If we are in lane 2, and no lane change was decided, continue forward\n”)
170 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v

+ a < 34 & v + a > 15 & positiveDist = true −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v +
a) & (a’ = 0) & (actrState’ = 2);\n”)

171 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a >= 34 & positiveDist = true −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = 0) &
(actrState’ = 2);\n”)

172 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a <= 15 & positiveDist = true −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = 0) &
(actrState’ = 2);\n\n”)

173

174 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a < 34 & v + a > 15 & positiveDist = false −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v +
a) & (a’ = 0) & (actrState’ = 2);\n”)

175 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a >= 34 & positiveDist = false −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = 0)
& (actrState’ = 2);\n”)

176 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a <= 15 & positiveDist = false −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = 0)
& (actrState’ = 2);\n\n”)

177

178 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x > length − v & t < max time & v +

138

a < 34 & v + a > 15 −> 1:(x’ = length) & (t’ = t + 1) & (v’ = v + a) & (actrState’ = 2);\
n”)

179 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x > length − v & t < max time & v +
a >= 34 −> 1:(x’ = length) & (t’ = t + 1) & (v’ = 34) & (actrState’ = 2);\n”)

180 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x > length − v & t < max time & v +
a <= 15 −> 1:(x’ = length) & (t’ = t + 1) & (v’ = 15) & (actrState’ = 2);\n\n”)

181

182 with open(args. lane change table) as csvfile :
183 reader = csv.DictReader(csvfile)
184 for row in reader :
185 probCrash = float(row[”Acc?”])
186

187 if probCrash != 0 and probCrash != 1:
188 if row[”d”] != max control dist and row[”vi2”] == v1:
189 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = t + %s) & (a’ = 0) & (
lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”
delta x1”],row[”delta t”], probCrash,1−probCrash,row[”delta x1”],row[”vf1”], row[” delta t ”],
str (3 − int(row[”o lane”])))

190 f . write (line)
191 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = t + %s) & (a’ = 0) & (
lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”], row[
”delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”],row[” delta t ”], str (3 − int(row
[”o lane”])))

192 f . write (line)
193 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = max time) & (a’ = 0)
& (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],
row[”delta x1”],row[” delta t ”], probCrash,1−probCrash,row[”delta x1”],row[”vf1”], str (3 − int
(row[”o lane”])))

194 f . write (line)
195 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = max time) & (a’ = 0) &
(lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],
row[”delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”], str (3 − int(row[”o lane”])
))

196 f . write (line)
197 elif row[”d”] == max control dist and row[”vi2”] == v1:
198 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’
= false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = t + %s) & (a’ = 0)

& (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],
row[”delta x1”],row[”delta t”],probCrash,1−probCrash,row[”delta x1”],row[”vf1”], row[” delta t
”], str (3 − int(row[”o lane”])))

199 f . write (line)
200 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = t + %s) & (a’ = 0) & (
lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”
delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”],row[” delta t ”], str (3 − int(row[
”o lane”])))

201 f . write (line)
202 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’

139

= false) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = max time) & (a’ =
0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”
],row[”delta x1”],row[”delta t”], probCrash,1−probCrash,row[”delta x1”],row[”vf1”], str (3 −
int(row[”o lane”])))

203 f . write (line)
204 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = max time) & (a’ = 0) &
(lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”o lane”], row[”d”],row[”vi1”], row[
”delta x1”], row[” delta t ”], probCrash,1−probCrash,row[”vf1”], str (3 − int(row[”o lane”])))

205 f . write (line)
206 elif probCrash == 0:
207 if row[”d”] != max control dist and row[”vi2”] == v1:
208 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %s)
& (t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”],row[”vf1”], row[”
delta t ”], str (3 − int(row[”o lane”])))

209 f . write (line)
210 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) &
(t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”], row[”vf1”], row[” delta t ”], str (3 −
int(row[”o lane”])))

211 f . write (line)
212 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) &
(t’ = max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”], row[”vf1”], str (3 −
int(row[”o lane”])))

213 f . write (line)
214 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’
= max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”

o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[” delta t ”], row[”vf1”], str (3 − int(row[”
o lane”])))

215 f . write (line)
216 elif row[”d”] == max control dist and row[”vi2”] == v1:
217 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %
s) & (t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[
”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”],row[”vf1”],row[”
delta t ”], str (3 − int(row[”o lane”])))

218 f . write (line)
219 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) &
(t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”
o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”vf1”], row[” delta t ”], str (3 −
int(row[”o lane”])))

220 f . write (line)
221 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %s)
& (t’ = max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[

”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”],row[”vf1”], str (3
− int(row[”o lane”])))

222 f . write (line)
223 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t
’ = max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false);\n” % (row[”

140

o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”], row[”vf1”], str (3 − int(row[”
o lane”])))

224 f . write (line)
225 else :
226 if row[”d”] != max control dist and row[”vi2”] == v1:
227 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

228 f . write (line)
229 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false
);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

230 f . write (line)
231 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false)
;\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

232 f . write (line)
233 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false)
;\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

234 f . write (line)
235 elif row[”d”] == max control dist and row[”vi2”] == v1:
236 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

237 f . write (line)
238 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

239 f . write (line)
240 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

241 f . write (line)
242 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false)
;\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”])

243 f . write (line)
244

245

246 f . write (”\nendmodule”)
247

248 f . close ()

B.1.4 Additive Steering Control

File B.4 model generator.py

1 # MDP GENERATOR − Transform the tables into the MDP
2 # in order to perform multi−objective synthesis .
3 #
4 # VERSION:
5 # − imperfect decision making (gamma)
6 # − linear acceleration assistance
7 # − steering control assistance
8 #
9 # Author: Francisco Girbal Eiras , MSc Computer Science

141

10 # University of Oxford, Department of Computer Science
11 # Email: francisco . eiras@cs .ox.ac.uk
12 # 1−Jul−2018; Last revision: 18−Jul−2018
13

14 import sys , csv , argparse , datetime
15

16 parser=argparse.ArgumentParser(
17 description =’’’Transform the tables into the MDP in order to perform multi−objective

synthesis . ’’’)
18 parser .add argument(’lane change table ’ , type=str, help=’Table for the lane change part of the

control module.’)
19 parser .add argument(’acc table ’ , type=str, help=’Table for the linear accelaration part of the

control module.’)
20 parser .add argument(’dm table’, type=str, help=’Table for the decision making module.’)
21 parser .add argument(’ driver type ’ , type=int, default =2, help=’1 = aggressive, 2 = average, 3 =

cautious’)
22 parser .add argument(’v’, type=str, help=’ Initial velocity of the vehicle . ’)
23 parser .add argument(’v1’, type=str, help=’ Initial velocity of the other vehicle . ’)
24 parser .add argument(’x1 0’, type=str, help=’ Initial position of the other vehicle . ’)
25 parser .add argument(’−−filename’, ’−f’, type=str, default =”mdp model”, help=’Output name for

the file generated.’)
26 args=parser. parse args ()
27

28 f = open(”%s.pm”%args.filename, ”w”)
29

30 v = args.v
31 v1 = args.v1
32 x1 0 = args.x1 0
33 driver type = args. driver type
34

35 if not (int (v) >= 15 and int(v) <= 34) or not (int(v1) >= 15 and int(v1) <= 34) or not (int(
x1 0) >= 1 and int(x1 0) <= 500) or not (driver type >= 1 and driver type <= 3):

36 raise ValueError(”Input out of range.”)
37

38 driver type = str(driver type)
39 max control dist = ”43”
40 max dm dist = ”80”
41 crash dist = ”6”
42 gamma = 0.10
43 length = 500
44

45 now = datetime.datetime.now()
46

47 # Write the beginning of the file
48 f . write (”//MDP automatically built using mdp generator.py for v1 = %s (to alter this value ,

run the script again).\n”%v1)
49 f . write (”//Generated on %s.\n\n”%(now.strftime(”%d−%m−%Y at %H:%M”)))
50 f . write (”//Version: imperfect decision making, gamma = %.2f; linear acceleration assistance ;

lane changing assistance ; \n\n”%gamma)
51

52 f . write (”mdp\n\n”)
53 f . write (”const int length = %d; // road length\n”%length)
54 f . write (”const int max time = 35; // maximum time of experiment\n”)
55 f . write (”const double gamma = %.2f; // gamma value\n\n”%gamma)
56 f . write (”// Other vehicle\n”)
57 f . write (”const int v1 = %s; // do not alter this manually!\n”%v1)
58 f . write (”const int x1 0 = %s;\n\n”%x1 0)
59 f . write (”// Environment variables\n”)
60 f . write (”global t : [0.. max time] init 0; // time \n”)

142

61 f . write (”global crashed : bool init false ; \n\n”)
62 f . write (”// Vehicle controlled \n”)
63 f . write (”global actrState : [1..2] init 1; // active module: 1 = control (both cars) , 2 =

decision making + monitoring\n”)
64 f . write (”global lC : bool init false ; // lane changing occuring? \n”)
65 f . write (”global x : [0.. length] init 0;\n”)
66 f . write (”global v : [15..34] init %s;\n”%v)
67 f . write (”global a : [−3..3] init 0;\n”)
68 f . write (”global k chosen : [1..3] init 1;\n”)
69 f . write (”global lane : [1..2] init 1;\n\n”)
70

71 f . write (”formula x1 = x1 0 + v1∗t;\n”)
72 f . write (”formula dist = x1>x?(x1 − x):(x − x1);\n”)
73 f . write (”formula positiveDist = (x < length)?x > x1:true;\n\n”)
74

75 # Decision making + monitoring module
76 f . write (”module Decision Making Monitoring\n\n”)
77 f . write (” // If a crash occurs , then nothing else can happen\n”)
78 f . write (” //[] actrState = 2 & crashed −> 1:(crashed’ = true);\n\n”)
79

80 f . write (” // If we are in lane 2, but behind the other vehicle , don’t try to pass\n”)
81 f . write (” [] actrState = 2 & !crashed & lane = 2 & positiveDist = false & x < length −> 1:(

actrState’ = 1);\n\n”)
82

83 f . write (” // If we are in lane 1, and no vehicle is in front , don’t change lanes\n”)
84 f . write (” [] actrState = 2 & !crashed & lane = 1 & positiveDist = true & x < length −> 1:(

actrState’ = 1);\n\n”)
85

86 with open(args.dm table) as csvfile :
87 reader = csv.DictReader(csvfile)
88 for row in reader :
89 # should we change from lane 1 to lane 2? it ’ s based on delta crash ! (and the ADAS)
90 if row[”type”] == driver type and row[”lane”] == ”1” and row[”d”] != max dm dist:
91 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist = %s & v

= %s & x < length −> gamma:(lC’ = true) & (actrState’ = 1) + (1−gamma)∗%s:(actrState’
= 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”

v”],row[”P lC”],row[”P nlC”])
92 f . write (line)
93 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist = %s & v

= %s & x < length −> gamma:(lC’ = false) & (a’ = −1) & (actrState’ = 1) + (1−gamma)
∗%s:(actrState’ = 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” %
(row[”d”],row[”v”],row[”P lC”],row[”P nlC”])

94 f . write (line)
95 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist = %s & v

= %s & x < length −> gamma:(actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ =
true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”v”],row[”P lC”

],row[”P nlC”])
96 f . write (line)
97 elif row[”type”] == driver type and row[”lane”] == ”1” and row[”d”] == max dm dist:
98 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist >= %s &

v = %s & x < length −> gamma:(lC’ = true) & (actrState’ = 1) + (1−gamma)∗%s:(
actrState’ = 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[
”d”],row[”v”],row[”P lC”],row[”P nlC”])

99 f . write (line)
100 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist >= %s &

v = %s & x < length −> gamma:(lC’ = false) & (a’ = −1) & (actrState’ = 1) + (1−gamma)
∗%s:(actrState’ = 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” %
(row[”d”],row[”v”],row[”P lC”],row[”P nlC”])

101 f . write (line)

143

102 line = ” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & dist >= %s &
v = %s & x < length −> gamma:(actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (lC’

= true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”v”],row[”
P lC”],row[”P nlC”])

103 f . write (line)
104

105 # should we go back to lane 1 from lane 2? it ’ s based on the distance we are at! (and the
ADAS)

106 if row[”type”] == driver type and row[”lane”] == ”2” and row[”d”] != max dm dist:
107 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist = %s & x

< length −> gamma:(lC’ = true) & (actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (lC
’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”P lC”],row[
”P nlC”])

108 f . write (line)
109 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist = %s & x

< length −> gamma:(lC’ = false) & (a’ = −1) & (actrState’ = 1) + (1−gamma)∗%s:(
actrState’ = 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[
”d”],row[”P lC”],row[”P nlC”])

110 f . write (line)
111 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist = %s & x

< length −> gamma:(actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = true) +
(1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”P lC”],row[”P nlC”])

112 f . write (line)
113 elif row[”type”] == driver type and row[”lane”] == ”2” and row[”d”] == max dm dist:
114 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist >= %s &

x < length −> gamma:(lC’ = true) & (actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (
lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”P lC”],
row[”P nlC”])

115 f . write (line)
116 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist >= %s &

x < length −> gamma:(lC’ = false) & (a’ = −1) & (actrState’ = 1) + (1−gamma)∗%s:(
actrState’ = 1) & (lC’ = true) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[
”d”],row[”P lC”],row[”P nlC”])

117 f . write (line)
118 line = ” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & dist >= %s &

x < length −> gamma:(actrState’ = 1) + (1−gamma)∗%s:(actrState’ = 1) & (lC’ = true) +
(1−gamma)∗%s:(actrState’ = 1) & (lC’ = false);\n” % (row[”d”],row[”P lC”],row[”P nlC”])

119 f . write (line)
120

121 # f.write(” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & x < length −> 1:(
lC’ = true) & (actrState ’ = 1);\n”)

122 # f.write(” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & x < length −> 1:(
lC’ = false) & (a’ = −1) & (actrState’ = 1);\n”)

123 # f.write(” [] actrState = 2 & !crashed & lane = 1 & positiveDist = false & x < length −> 1:(
actrState’ = 1);\n\n”)

124

125 # f.write(” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & x < length −> 1:(
lC’ = true) & (actrState ’ = 1);\n”)

126 # f.write(” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & x < length −> 1:(
lC’ = false) & (a’ = −1) & (actrState’ = 1);\n”)

127 # f.write(” [] actrState = 2 & !crashed & lane = 2 & positiveDist = true & x < length −> 1:(
actrState’ = 1);\n\n”)

128

129 f . write (”endmodule\n\n”)
130

131 # Control module
132 f . write (”module Control\n\n”)
133

134 a vals = [−1, 0, 1]

144

135

136 f . write (” // If we are in lane 1, and no lane change was decided, continue forward (which
might result in crash)\n”)

137 f . write (” // The vehicle is behind the other driver (positiveDist = false , x < x1)\n”)
138 with open(args. acc table) as csvfile :
139 reader = csv.DictReader(csvfile)
140 for row in reader :
141 if row[”d”] != max dm dist:
142 for delta a in a vals :
143 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a < 34 & v + a > 15 &
dist = %s & v = %s & %s + %d <= 3 & %s + %d >= −3 −> 1:(x’ = x + v) & (t’ = t +
1) & (v’ = v + a) & (a’ = %s + %d) & (actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],
row[”a”],delta a,row[”a”],delta a,row[”a”],delta a)

144 f . write (line)
145 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a >= 34 & dist = %s &
v = %s & %s + %d <= 3 & %s + %d >= −3 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34)
& (a’ = %s + %d) & (actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],row[”a”],delta a,

row[”a”],delta a,row[”a”],delta a)
146 f . write (line)
147 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a <= 15 & dist = %s &
v = %s & %s + %d <= 3 & %s + %d >= −3 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15)
& (a’ = %s + %d) & (actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],row[”a”],delta a,

row[”a”],delta a,row[”a”],delta a)
148 f . write (line)
149 elif row[”d”] == max dm dist:
150 for delta a in a vals :
151 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a < 34 & v + a > 15 &
dist >= %s & v = %s & %s + %d <= 3 & %s + %d >= −3 −> 1:(x’ = x + v) & (t’ = t +
1) & (v’ = v + a) & (a’ = %s + %d) & (actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],
row[”a”],delta a,row[”a”],delta a,row[”a”],delta a)

152 f . write (line)
153 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a >= 34 & dist >= %s
& v = %s & %s + %d <= 3 & %s + %d >= −3 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ =
34) & (a’ = %s + %d) & (actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],row[”a”],delta a
,row[”a”],delta a,row[”a”],delta a)

154 f . write (line)
155 line = ” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t <

max time & positiveDist = false & (x1 + v1 − x − v) >= %s & v + a <= 15 & dist >= %s
& v = %s & %s + %d <= 3 & %s + %d >= −3 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ =
15) & (a’ = %s + %d) & (actrState’ = 2);\n” % (crash dist,row[”d”],row[”v”],row[”a”],delta a
,row[”a”],delta a,row[”a”],delta a)

156 f . write (line)
157

158

159 f . write (”\n [] actrState = 1 & !crashed & !lC & lane = 1 & x > length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) >= %s −> 1:(x’ = length) & (t’ = t + 1) & (
actrState’ = 2);\n”%crash dist)

160 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x > length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s −> 1:(x’ = length) & (t’ = t + 1) & (crashed’
= true) & (actrState’ = 2);\n\n”%crash dist)

161

162 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s & v + a < 34 & v + a > 15 −> 1:(x’ = x + v
) & (t’ = t + 1) & (v’ = v + a) & (crashed’ = true) & (actrState’ = 2);\n”%crash dist)

145

163 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s & v + a >= 34 −> 1:(x’ = x + v) & (t’ = t
+ 1) & (v’ = 34) & (crashed’ = true) & (actrState’ = 2);\n”%crash dist)

164 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = false & (x1 + v1 − x − v) < %s & v + a <= 15 −> 1:(x’ = x + v) & (t’ = t
+ 1) & (v’ = 15) & (crashed’ = true) & (actrState’ = 2);\n”%crash dist)

165

166 f . write (” // The vehicle is in front of the other driver (positiveDist = true, x > x1)\n”)
167 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &

positiveDist = true & v + a < 34 & v + a > 15 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v
+ a) & (a’ = 0) & (actrState’ = 2);\n”)

168 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = true & v + a >= 34 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (
actrState’ = 2);\n”)

169 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x <= length − v & t < max time &
positiveDist = true & v + a <= 15 −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (
actrState’ = 2);\n\n”)

170

171 f . write (” [] actrState = 1 & !crashed & !lC & lane = 1 & x > length − v & t < max time &
positiveDist = true −> 1:(x’ = length) & (t’ = t + 1) & (actrState’ = 2);\n\n”)

172

173 f . write (” // If we are in lane 2, and no lane change was decided, continue forward\n”)
174 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v

+ a < 34 & v + a > 15 & positiveDist = true −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v +
a) & (a’ = 0) & (actrState’ = 2);\n”)

175 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a >= 34 & positiveDist = true −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = 0) &
(actrState’ = 2);\n”)

176 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a <= 15 & positiveDist = true −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = 0) &
(actrState’ = 2);\n\n”)

177

178 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a < 34 & v + a > 15 & positiveDist = false −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = v +
a) & (a’ = 0) & (actrState’ = 2);\n”)

179 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a >= 34 & positiveDist = false −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 34) & (a’ = 0)
& (actrState’ = 2);\n”)

180 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x <= length − v & t < max time & v
+ a <= 15 & positiveDist = false −> 1:(x’ = x + v) & (t’ = t + 1) & (v’ = 15) & (a’ = 0)
& (actrState’ = 2);\n\n”)

181

182 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x > length − v & t < max time & v +
a < 34 & v + a > 15 −> 1:(x’ = length) & (t’ = t + 1) & (v’ = v + a) & (actrState’ = 2);\

n”)
183 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x > length − v & t < max time & v +

a >= 34 −> 1:(x’ = length) & (t’ = t + 1) & (v’ = 34) & (actrState’ = 2);\n”)
184 f . write (” [] actrState = 1 & !crashed & !lC & lane = 2 & x > length − v & t < max time & v +

a <= 15 −> 1:(x’ = length) & (t’ = t + 1) & (v’ = 15) & (actrState’ = 2);\n\n”)
185

186 keys = [’ o lane ’ , ’d’ , ’ vi1 ’ , ’ vi2 ’]
187

188 with open(args. lane change table) as csvfile :
189 reader = csv.DictReader(csvfile)
190 prev row = [’1’ , ’1’ , ’15’ , ’15’]
191 k = 0
192 for row in reader :
193 new row = [row[’o lane ’], row[’d’], row[’ vi1 ’], row[’ vi2 ’]]
194 if not new row == prev row:

146

195 prev row = new row
196 k = 1
197 else :
198 k = k + 1
199

200 probCrash = float(row[”Acc?”])
201

202 if probCrash != 0 and probCrash != 1:
203 if row[”d”] != max control dist and row[”vi2”] == v1:
204 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) & (k chosen’ = %d) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ = t
+ %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’ = %d);\n”
% (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],probCrash,k,1−probCrash,
row[”delta x1”],row[”vf1”], row[” delta t ”], str (3 − int(row[”o lane”])) ,k)

205 f . write (line)
206 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) & (k chosen’ = %d) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = t +
%s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’ = %d);\n” %
(row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[” delta t ”], probCrash,k,1−probCrash,
row[”vf1”],row[” delta t ”], str (3 − int(row[”o lane”])) ,k)

207 f . write (line)
208 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) & (k chosen’ = %d) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ =
max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’ = %d);\
n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],probCrash,k,1−
probCrash,row[”delta x1”], row[”vf1”], str (3 − int(row[”o lane”])) ,k)

209 f . write (line)
210 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) & (k chosen’ = %d) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ =
max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’ = %d);\
n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”], row[” delta t ”], probCrash,k,1−
probCrash,row[”vf1”], str (3 − int(row[”o lane”])) ,k)

211 f . write (line)
212 elif row[”d”] == max control dist and row[”vi2”] == v1:
213 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’
= false) & (k chosen’ = %d) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ =
t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’ = %d);\n

” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],probCrash,k,1−probCrash
,row[”delta x1”],row[”vf1”],row[” delta t ”], str (3 − int(row[”o lane”])) ,k)

214 f . write (line)
215 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t <= max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) & (k chosen’ = %d) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ = t +
%s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’ = %d);\n” %
(row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”], probCrash,k,1−probCrash,
row[”vf1”],row[” delta t ”], str (3 − int(row[”o lane”])) ,k)

216 f . write (line)
217 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’
= false) & (k chosen’ = %d) + %.2f:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) & (t’ =
max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’ = %d);\
n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],probCrash,k,1−
probCrash,row[”delta x1”],row[”vf1”], str (3 − int(row[”o lane”])) ,k)

218 f . write (line)

147

219 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >
length − %s & t > max time − %s −> %.2f:(crashed’ = true) & (actrState’ = 2) & (lC’ =

false) & (k chosen’ = %d) + %.2f:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’ =
max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’ = %d);\
n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[” delta t ”], probCrash,k,1−
probCrash,row[”vf1”], str (3 − int(row[”o lane”])) ,k)

220 f . write (line)
221 elif probCrash == 0:
222 if row[”d”] != max control dist and row[”vi2”] == v1:
223 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %s)
& (t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’ =
%d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”],

row[”vf1”],row[”delta t”], str (3 − int(row[”o lane”])) ,k)
224 f . write (line)
225 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) &
(t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’ = %
d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”vf1”], row[”
delta t ”], str (3 − int(row[”o lane”])) ,k)

226 f . write (line)
227 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %s) &
(t’ = max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’ =
%d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”],
row[”vf1”], str (3 − int(row[”o lane”])) ,k)

228 f . write (line)
229 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t’
= max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’ = %

d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”], row[”vf1”], str (3
− int(row[”o lane”])) ,k)

230 f . write (line)
231 elif row[”d”] == max control dist and row[”vi2”] == v1:
232 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %
s) & (t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’
= %d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”

],row[”vf1”],row[”delta t”], str (3 − int(row[”o lane”])) ,k)
233 f . write (line)
234 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) &
(t’ = t + %s) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’ = %
d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”vf1”],row[”
delta t ”], str (3 − int(row[”o lane”])) ,k)

235 f . write (line)
236 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = x + %s) & (v’ = %s)
& (t’ = max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’
= %d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”delta x1”

],row[”vf1”],str(3 − int(row[”o lane”])) ,k)
237 f . write (line)
238 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = false) & (x’ = length) & (v’ = %s) & (t
’ = max time) & (a’ = 0) & (lane’ = %s) & (actrState’ = 2) & (lC’ = false) & (k chosen’ =
%d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],row[”vf1”], str (3
− int(row[”o lane”])) ,k)

239 f . write (line)
240 else :

148

241 if row[”d”] != max control dist and row[”vi2”] == v1:
242 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) & (k chosen’ = %d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”
delta t”],k)

243 f . write (line)
244 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false
) & (k chosen’ = %d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],
k)

245 f . write (line)
246 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x <=

length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false)
& (k chosen’ = %d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],k

)
247 f . write (line)
248 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist = %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false)
& (k chosen’ = %d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],k
)

249 f . write (line)
250 elif row[”d”] == max control dist and row[”vi2”] == v1:
251 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) & (k chosen’ = %d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”

delta t”],k)
252 f . write (line)
253 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t <= max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) & (k chosen’ = %d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”
delta t”],k)

254 f . write (line)
255 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x

<= length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ =
false) & (k chosen’ = %d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”
delta t”],k)

256 f . write (line)
257 line = ” [] actrState = 1 & !crashed & lC & lane = %s & dist >= %s & v = %s & x >

length − %s & t > max time − %s −> 1:(crashed’ = true) & (actrState’ = 2) & (lC’ = false)
& (k chosen’ = %d);\n” % (row[”o lane”], row[”d”],row[”vi1”],row[”delta x1”],row[”delta t”],k

)
258 f . write (line)
259

260

261 f . write (”\nendmodule”)
262

263 f . close ()

B.2 Pareto Curve Generator (Python)

File B.5 pareto curve.py

1 # PARETO CURVE − Generate the model, perform verification to obtain
2 # the appropriate multi−objective synthesis problem and
3 # perform synthesis to obtain the pareto curve desired (changed to
4 # use PRISM instead of storm).
5

149

6 # Author: Francisco Girbal Eiras , MSc Computer Science
7 # University of Oxford, Department of Computer Science
8 # Email: francisco . eiras@cs .ox.ac.uk
9 # 29−Jun−2018; Last revision: 10−Jul−2018

10

11 import sys , os, subprocess , csv , argparse
12 import matplotlib . pyplot as plt
13 import numpy as np
14 from matplotlib .patches import Polygon
15 from matplotlib . collections import PatchCollection
16 from matplotlib import cm
17

18 plt . rc(’ text ’ , usetex=True)
19 plt . rc(’ font ’ , family=’ serif ’)
20 plt . rc(’ font ’ , size =13)
21

22 parser=argparse.ArgumentParser(
23 description =’’’Generate the model, perform verification to obtain the appropriate multi−

objective synthesis problem and perform synthesis to obtain the pareto curve desired . ’’’)
24 parser .add argument(’ driver type ’ , type=int, default =2, help=’1 = aggressive, 2 = average, 3 =

cautious. ’)
25 parser .add argument(’v’, type=int, default =29, help=’ Initial velocity of the vehicle . ’)
26 parser .add argument(’v1’, type=int, default =30, help=’ Initial velocity of the other vehicle . ’)
27 parser .add argument(’x1 0’, type=int, default =15, help=’ Initial position of the other vehicle .

’)
28 parser .add argument(’−−cond’, ’−c’, action=”store true”, help=’If set , conditional

probabilities will be displayed . ’)
29 parser .add argument(’−−output’, ’−o’, type=str, default =”paretopoints”, help=’Name of the

generated file ’)
30 parser .add argument(’−−query’, ’−q’, type=str, default =””, help=’Query to build the Pareto

curve on. ’)
31 parser .add argument(’−−path’, ’−p’, type=str, default =”results”, help=’Generated file will be

saved in PATH.’)
32 args=parser. parse args ()
33

34 driver type = args. driver type
35 v = args.v
36 v1 = args.v1
37 x1 0 = args.x1 0
38 path = args.path
39 output = args.output
40 query = args.query
41 cond = args.cond
42

43

44 def build model(ex path) :
45 os.system(”mkdir %s > /dev/null”%ex path)
46

47 # Construct the file
48 print (’Generating the model ... ’)
49 os.system(’python3 ../model/mdp generator.py ../model/model tables/control table .csv ../

model/model tables/acc table.csv ../ model/model tables/dm table.csv %s %s %s %s > /dev/
null’%(driver type,v,v1,x1 0))

50

51 # −−−−−−−−−−−−− Verification −−−−−−−−−−−−−
52 print (’ Building the model and performing verification (could take awhile − no longer than 10

minutes) ... ’)
53 os.system(’prism mdp model.pm properties/verification mod. pctl −exportmodel %s/out.all −

exportresults %s/res.txt −javamaxmem 4g’%(ex path, ex path))

150

54

55 f = open(”%s/res.txt”%ex path, ”r”)
56

57 Tmin = 30
58

59 while True:
60 prop = f. readline () [:−2]
61 if prop == ””:
62 break
63 f . readline ()
64 probability = f. readline () [:−1]
65

66 print (prop + ’ : ’ + probability)
67

68 if ’Pmax=? [F (x=500&t<’ in prop and float(probability) > 0.001:
69 T = int(prop [20:22])
70 Tmin = min(T, Tmin)
71

72 f . readline ()
73

74 f . close ()
75

76 f = open(”%s/time.txt”%ex path, ”w”)
77 f . write (str (Tmin))
78 f . close ()
79

80

81 def synthesis (ex path, query, output):
82 # −−−−−−−−−−−−− Synthesis −−−−−−−−−−−−−
83 if query == ””:
84 f = open(”%s/time.txt”%ex path, ”r”)
85 Tmin = int(f. readline ())
86 f . close ()
87 multi obj query = ”multi(Pmin=? [F crashed], Pmax=? [F (x=500) & (t<%d)])”%Tmin
88 else :
89 multi obj query = query
90

91 print (’ Synthesis using the query ”%s”... ’%multi obj query)
92

93 os.system(’prism −importmodel %s/out.all −pctl ”%s” −exportpareto %s/%s.txt’%(ex path,
multi obj query,ex path,output))

94 # output 1 = str(proc.stdout .read())
95

96 print (’Outputing to %s.txt and %s query.txt ’%(output,output))
97

98 f = open(”%s/%s query.txt”%(ex path,output), ”w”)
99 f . write (multi obj query)

100 f . close ()
101

102

103 def draw curve(ex path, input file , cond):
104 x = []
105 y = []
106

107 f = open(”%s/%s query.txt”%(ex path,input file), ”r”)
108 query = f. readline ()
109 f . close ()
110

111 # LaTeX display handlers

151

112 query = query.replace(”min=?”, ”$ {=?}$”)
113 query = query.replace(”max=?”, ”$ {=?}$”)
114 query = query.replace(”&”, ”\&”)
115 query = query.replace(”<”, ”$<$”)
116 query = query.replace(”>”, ”$>$”)
117

118 xlabel = query. split (’ , ’) [0][6:]
119 ylabel = query. split (’ , ’) [1][:−1]
120

121 f = open(”%s/%s.txt”%(ex path,input file), ”r”)
122 arr val = f. readline ()[2:−1]
123 new arr = arr val . split (’ , (’)
124 for tup in new arr:
125 text tup = tup[:−1]
126 x.append(float(text tup . split (’ , ’) [0]))
127 y.append(float(text tup . split (’ , ’) [1]))
128 f . close ()
129

130 new x, new y = zip(∗sorted(zip(x, y)))
131 new x = [xs for xs in new x]
132 new y = [ys for ys in new y]
133

134 if cond:
135 for i in range(len(new y)):
136 new y[i] = min(new y[i]/(1−new x[i]),1)
137

138 ylabel = ”%s $||$ F (x=500)]”%ylabel[:−1]
139

140 fig , ax = plt. subplots ()
141

142 plt . plot (new x, new y, marker = ’o’ , color =’g’)
143

144 if len(new x) > 1:
145 new x.append(max(x))
146 new y.append(0)
147

148 new x.append(min(x))
149 new y.append(0)
150

151 xy = np.vstack((new x, new y)).T
152

153 polygon = [Polygon(xy, True)]
154 p = PatchCollection(polygon, alpha=0.3)
155 p. set color (”g”)
156

157 ax. add collection (p)
158

159 plt . xlabel (xlabel)
160 plt . ylabel (ylabel)
161 # plt. title (query)
162

163 plt .show()
164

165 def path = ”%s/r %s %s %s %s”%(path,driver type,v,v1,x1 0)
166

167 if not os.path. exists (”%s/res.txt”%def path):
168 build model(def path)
169

170 if not os.path. exists (”%s/%s.txt”%(def path,output)):

152

171 synthesis (def path , query, output)
172

173 draw curve(def path , output, cond)
174 print (’Done.’)

B.3 Strategy Synthesis and Simulator (Python)

File B.6 synthesis and simulate.py

1 # SYNTHESIS AND SIMULATE − Given some initial conditions,
2 # obtain a sample trace and simulate it .
3

4 # Author: Francisco Girbal Eiras , MSc Computer Science
5 # University of Oxford, Department of Computer Science
6 # Email: francisco . eiras@cs .ox.ac.uk
7 # 1−Jul−2018; Last revision: 1−Jul−2018
8

9 import sys , os, csv , argparse , subprocess
10

11 parser=argparse.ArgumentParser(
12 description =’’’Given some initial conditions , obtain a sample trace and simulate it . ’’’)
13 parser .add argument(’ driver type ’ , type=int, default =2, help=’1 = aggressive, 2 = average, 3 =

cautious. ’)
14 parser .add argument(’v’, type=int, default =29, help=’ Initial velocity of the vehicle . ’)
15 parser .add argument(’v1’, type=int, default =30, help=’ Initial velocity of the other vehicle . ’)
16 parser .add argument(’x1 0’, type=int, default =15, help=’ Initial position of the other vehicle .

’)
17 parser .add argument(’−p’, ’−−path’, type=str, help=’Path where the all the files will be

generated. ’)
18 parser .add argument(’−q’, ’−−query’, type=str, help=’Use the multi−objective query given . ’)
19 parser .add argument(’−o’, ’−−output’, type=str, default =”adv”, help=’Name of the output

adversary generated. ’)
20 parser .add argument(’−x’, ’−−times’, type=float, default =1, help=’Execution is X times faster .

’)
21 parser .add argument(’−rt’, ’−−read trace’, action=”store true”, help=’Read an existing trace . ’

)
22 parser .add argument(’−ra’, ’−−read adv’, action=”store true”, help=’Read an adversary and

generate a new trace only . ’)
23 parser .add argument(’−a’, ’−−adv’, type=str, default=”adv”, help=’Read an adversary and

generate a new trace only . ’)
24 args=parser. parse args ()
25

26 driver type = args. driver type
27 v = args.v
28 v1 = args.v1
29 x1 0 = args.x1 0
30 output = args.output
31

32 speed = args.times
33 adv = args.adv
34

35 if args .path:
36 p = args.path
37 else :
38 p = ”built models/r %d %d %d %d”%(driver type,v,v1,x1 0)
39

40 if not args . read trace :

153

41

42 if not args .read adv:
43 # Synthesis
44 if not args .query:
45 os.system(”python3 helpers/ synthesis .py %d %d %d %d −p %s −o %s”%(driver type, v, v1,

x1 0, p, output))
46 else :
47 os.system(’python3 helpers/ synthesis .py %d %d %d %d −p %s −q ”%s” −o %s’%(

driver type, v, v1, x1 0, p, args.query, output))
48 else :
49 print (”Skip synthesis ; read adversary from %s.tra and generate new trace to simulate .”%

adv)
50

51 states file = ”out.sta”
52 labels file = ”out.lab”
53 new states file = ”%s new states.sta”%adv
54 adv file = ”%s.tra”%adv
55

56 # Multi−objective synthesis
57 os.system(”python3 helpers/ multi gen trace .py %s %s %s %s %d %d −p %s”%(states file,

labels file, new states file , adv file , v1, x1 0, p))
58

59 else :
60 print (”Reading existing trace ... ”)
61

62 os.system(”python3 helpers/simulate .py %d %d %d %s/gen trace.csv −x %f”%(v, v1, x1 0, p,
speed))

File B.7 helpers/synthesis.py

1 # SYNTHESIS − Given a set of initial conditions , build a model,
2 # verify it and obtain the correct multi−objective property for
3 # synthesis in order to obtain an adversary .
4

5 # Author: Francisco Girbal Eiras , MSc Computer Science
6 # University of Oxford, Department of Computer Science
7 # Email: francisco . eiras@cs .ox.ac.uk
8 # 1−Jul−2018; Last revision: 1−Jul−2018
9

10 import sys , os, subprocess , csv , argparse
11 import random
12

13 parser=argparse.ArgumentParser(
14 description =’’’Given a set of initial conditions , build a model, verify it and obtain the

correct multi−objective property for synthesis in order to obtain an adversary . ’’’)
15 parser .add argument(’ driver type ’ , type=int, default =2, help=’1 = aggressive, 2 = average, 3 =

cautious. ’)
16 parser .add argument(’v’, type=int, default =29, help=’ Initial velocity of the vehicle . ’)
17 parser .add argument(’v1’, type=int, default =30, help=’ Initial velocity of the other vehicle . ’)
18 parser .add argument(’x1 0’, type=int, default =15, help=’ Initial position of the other vehicle .

’)
19 parser .add argument(’−−query’, ’−q’, type=str, default =””, help=’Query to generate an

adversary on. ’)
20 parser .add argument(’−−output’, ’−o’, type=str, default =”adv”, help=’Name of the adversary

file generated for the query. ’)
21 parser .add argument(’−−path’, ’−p’, type=str, default =””, help=’Generated file will be saved

in PATH.’)
22 args=parser. parse args ()
23

154

24 driver type = args. driver type
25 v = args.v
26 v1 = args.v1
27 x1 0 = args.x1 0
28 path = args.path
29 query = args.query
30 output = args.output
31

32 def build model(ex path) :
33 os.system(”mkdir %s > /dev/null”%ex path)
34

35 # Construct the file
36 print (’Generating the model ... ’)
37 os.system(’python3 model/mdp generator.py model/model tables/control table.csv model/

model tables/acc table.csv model/model tables/dm table.csv %s %s %s %s > /dev/null’%(
driver type,v,v1,x1 0))

38

39 # −−−−−−−−−−−−− Verification −−−−−−−−−−−−−
40 print (’ Building the model and performing verification (could take awhile − no longer than 10

minutes) ... ’)
41 os.system(’prism mdp model.pm helpers/properties/verification mod . pctl −exportmodel %s/out.

all −exportresults %s/res.txt −javamaxmem 4g −cuddmaxmem 2g’%(ex path, ex path))
42

43 f = open(”%s/res.txt”%ex path, ”r”)
44

45 Tmin = 30
46

47 while True:
48 prop = f. readline () [:−2]
49 if prop == ””:
50 break
51 f . readline ()
52 probability = f. readline () [:−1]
53

54 print (prop + ’ : ’ + probability)
55

56 if ’Pmax=? [F (x=length&t<’ in prop and float(probability) > 0.001:
57 T = int(prop [23:25])
58 Tmin = min(T, Tmin)
59

60 f . readline ()
61

62 f . close ()
63

64 f = open(”%s/time.txt”%ex path, ”w”)
65 f . write (str (Tmin))
66 f . close ()
67

68

69 def synthesis (ex path, query, output):
70 # −−−−−−−−−−−−− Synthesis −−−−−−−−−−−−−
71 if query == ””:
72 f = open(”%s/time.txt”%ex path, ”r”)
73 Tmin = int(f. readline ())
74 f . close ()
75 multi obj query = ”multi(Pmax=? [F x=400 & t < %d], P<=0.18 [F crashed])”%Tmin
76 else :
77 multi obj query = query
78

155

79 print (’ Synthesis using the query ”%s”... ’%multi obj query)
80

81 os.system(’prism −importmodel %s/out.all −lp −pctl ”%s” −exportadv %s/%s.tra −
exportprodstates %s/%s new states.sta −javamaxmem 4g −cuddmaxmem 2g’%(ex path,
multi obj query,ex path,output,ex path,output))

82

83 print (’Outputing to %s.tra, %s new states.sta and %s query.txt ’%(output,output,output))
84

85 f = open(”%s/%s query.txt”%(ex path,output), ”w”)
86 f . write (multi obj query)
87 f . close ()
88

89

90 # def path = ”%s/r %s %s %s %s”%(path,driver type,v,v1,x1 0)
91 def path = path
92

93 if not os.path. exists (”%s/res.txt”%def path):
94 build model(def path)
95

96 if not os.path. exists (”%s/%s.txt”%(def path,output)):
97 synthesis (def path , query, output)

File B.8 helpers/multi gen trace.py

1 # MULTI GEN TRACE − Given the states and labels of an MDP,
2 # the adversary generated and the states of the product of
3 # the MDP by the DRA, obtain a trace in the original MDP
4

5 # Author: Francisco Girbal Eiras , MSc Computer Science
6 # University of Oxford, Department of Computer Science
7 # Email: francisco . eiras@cs .ox.ac.uk
8 # 13−Jul−2018; Last revision: 18−Jul−2018
9

10 import sys , os, subprocess , csv , argparse
11 import random
12

13 parser=argparse.ArgumentParser(
14 description =’’’Given the states and labels of an MDP, the adversary generated and the

states of the product of the MDP by the DRA, obtain a trace in the original MDP’’’)
15 parser .add argument(’mdp states’, type=str, help=’States of the original MDP.’)
16 parser .add argument(’mdp labels’, type=str, help=’Labels of the original MDP.’)
17 parser .add argument(’new states’ , type=str, help=’States of the product MDP (of the original

and the DRA of the property). ’)
18 parser .add argument(’adversary’ , type=str, help=’Transitions in the new state space. ’)
19 parser .add argument(’v1’, type=int, help=’ Initial speed of the other vehicle . ’)
20 parser .add argument(’x1 0’, type=int, help=’ Initial position of the other vehicle . ’)
21 parser .add argument(’−o’, ’−−output’, type=str, default =”gen trace.csv”, help=’Name of the

generated .csv file (path excluded) . ’)
22 parser .add argument(’−p’, ’−−path’, type=str, default =””, help=’Path where the the input files

are stored , and text and csv files will be generated. ’)
23 parser .add argument(’−c’, ’−−clear’, action=”store true”, help=’Clear the generated trace text

file . ’)
24 args=parser. parse args ()
25

26 states file = ”%s/%s”%(args.path,args.mdp states)
27 labels file = ”%s/%s”%(args.path,args.mdp labels)
28 new states file = ”%s/%s”%(args.path,args.new states)
29 adv file = ”%s/%s”%(args.path,args.adversary)
30

156

31 def multi transform label file (old states , old labels , new states) :
32 new init states = []
33 new deadlocks = []
34

35 sta = {}
36 init states = []
37 deadlocks = []
38

39 # import internal state representation
40 f = open(old states , ”r”)
41 header = f. readline () [:−1]
42 while True:
43 s = f. readline () [:−1]
44 if s == ””:
45 break
46

47 s = s. split (’ : ’)
48 sta [s [0]] = s[1][1:−1]
49

50 f . close ()
51

52 # import init and deadlock states
53 f = open(old labels , ”r”)
54 f . readline ()
55 while True:
56 s = f. readline () [:−1]
57 if s == ””:
58 break
59

60 s = s. split (’ : ’)
61 if s [1] == ” 0”:
62 init states .append(sta[s [0]])
63 elif s [1] == ” 1”:
64 deadlocks.append(sta[s [0]])
65

66 f . close ()
67

68 # import internal state representation
69 f = open(new states, ”r”)
70 header = f. readline ()[1:−1]
71 header sp = header. split (’ , ’)
72 t index = header sp.index(”t”)
73 lane index = header sp.index(”lane”)
74

75 while True:
76 s = f. readline () [:−2]
77 if s == ””:
78 break
79

80 s = s. split (’ : ’)
81 s1 spl = s [1]. split (’ , ’)
82 new s1 = ’, ’ . join (s1 spl [t index : lane index +1])
83 if t index == 0:
84 new s1 = new s1[1:]
85

86 if new s1 in init states :
87 new init states .append(s[0])
88 elif new s1 in deadlocks:
89 new deadlocks.append(s[0])

157

90

91 f . close ()
92

93 new labels = {’ init ’ : new init states , ’deadlocks’ : new deadlocks}
94 return new labels
95

96 def multi generate sample path (new states f , adv f , new labels , result file) :
97 print (’Generate a sample path in the synthesised model ... ’)
98

99 sta = {}
100 tra = {}
101 init states = new labels[’ init ’]
102 deadlocks = new labels[’deadlocks’]
103 step = 0
104

105 # import internal state representation
106 f = open(new states f, ”r”)
107 header = f. readline () [:−1]
108 while True:
109 s = f. readline () [:−1]
110 if s == ””:
111 break
112

113 s = s. split (’ : ’)
114 sta [s [0]] = s[1]
115

116 f . close ()
117

118 # import state transitions
119 f = open(adv f, ”r”)
120 f . readline ()
121 while True:
122 s = f. readline () [:−1]
123 if s == ””:
124 break
125

126 s = s. split ()
127 if s [0] in tra .keys() :
128 if ’0’ in tra [s [0]]. keys() :
129 tra [s [0]][’0’]. append([s [1], s [2]])
130 else :
131 tra [s [0]][’0’] = [[s [1], s [2]]]
132 else :
133 tra [s [0]] = {}
134

135 if ’0’ in tra [s [0]]. keys() :
136 tra [s [0]][’0’]. append([s [1], s [2]])
137 else :
138 tra [s [0]][’0’] = [[s [1], s [2]]]
139

140 # print(”\n”. join (”{}\t{}”.format(k, v) for k, v in tra . items()))
141

142 f . close ()
143

144 # start simulation
145 f = open(result file , ”w”)
146 f . write (”step,” + header[1:−1] + ”\n”)
147 curr state = random.choice(init states)
148 f . write (str (step) + ”,” + sta[curr state][1:−1] + ”\n”)

158

149

150 while (not curr state in deadlocks) and (curr state in tra .keys()) :
151 possible trans = tra[curr state]
152 action taken = random.choice(list (possible trans .keys()))
153 diff trans = possible trans [action taken]
154

155 if len(diff trans) == 1:
156 curr state = diff trans [0][0]
157 else :
158 possible states = []
159 cum probabilities = []
160

161 for elem in diff trans :
162 possible states .append(elem[0])
163 if len(cum probabilities) == 0:
164 cum probabilities .append(float(elem[1]))
165 else :
166 cum probabilities .append(cum probabilities [len(cum probabilities) − 1] + float(elem

[1]))
167

168 random prob = random.uniform(0, 1)
169 i = 0
170 while True:
171 if random prob <= cum probabilities[i]:
172 break
173 i = i+1
174

175 curr state = possible states [i]
176

177 step = step + 1
178 f . write (str (step) + ”,” + sta[curr state][1:−1] + ”\n”)
179

180 if not curr state in tra .keys() :
181 print (”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”)
182 print (”ERROR in adversary file : end state not in deadlock, but no transition found.”)
183 print (”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”)
184

185 f . close ()
186

187 def multi generate trace from file (file , v1, x1 0, out):
188 # Read the generated text file
189 print (’Read the generated file and modify the trace file to become readable in simulation ...

’)
190

191 csvfile = open(out, ’w’)
192 fieldnames = [’t end’ , ’type’ , ’v’ , ’crashed’ , ’ lane ’ , ’ x t 1 ’ , ’ x t 2 ’ , ’ x t 3 ’ , ’ y t 1 ’ , ’ y t 2 ’ , ’

y t 3 ’ , ’ y t 4 ’ , ’ y t 5 ’ , ’ y t 6 ’ , ’ y t 7 ’]
193 writer = csv.DictWriter(csvfile , fieldnames=fieldnames)
194

195 writer . writeheader ()
196

197 next change lanes = False
198 curr v = 0
199 curr t = 0
200 curr x = 0
201

202 with open(file) as csvfile :
203 reader = csv.DictReader(csvfile)
204 # Skip the first line

159

205 # next(reader)
206 for row in reader :
207

208 if row[’ actrState ’] == ”1” and row[”lC”] == ”false”:
209 curr v = int(row[’v’])
210

211 if row[’ actrState ’] == ”1” and row[”lC”] == ”true”:
212 next change lanes = True
213 curr v = int(row[’v’])
214 curr t = int(row[’ t ’])
215 curr x = int(row[’x’])
216

217 if row[’ actrState ’] == ”2” and next change lanes == False:
218 if row[’crashed’] == ’false’ :
219 writer .writerow({ ’ t end’ : row[’ t ’], ’type’ : ’1’ , ’v’ : curr v , ’crashed’ : ’0’ , ’ lane ’

: row[’ lane ’], ’ x t 1 ’ : ’0’ , ’ x t 2 ’ : ’0’ , ’ x t 3 ’ : ’0’ , ’ y t 1 ’ : ’0’ , ’ y t 2 ’ : ’0’ , ’
y t 3 ’ : ’0’ , ’ y t 4 ’ : ’0’ , ’ y t 5 ’ : ’0’ , ’ y t 6 ’ : ’0’ , ’ y t 7 ’ : ’0’})

220 else :
221 writer .writerow({ ’ t end’ : row[’ t ’], ’type’ : ’1’ , ’v’ : curr v , ’crashed’ : ’1’ , ’ lane ’

: row[’ lane ’], ’ x t 1 ’ : ’0’ , ’ x t 2 ’ : ’0’ , ’ x t 3 ’ : ’0’ , ’ y t 1 ’ : ’0’ , ’ y t 2 ’ : ’0’ , ’
y t 3 ’ : ’0’ , ’ y t 4 ’ : ’0’ , ’ y t 5 ’ : ’0’ , ’ y t 6 ’ : ’0’ , ’ y t 7 ’ : ’0’})

222

223 if row[’ actrState ’] == ”2” and next change lanes == True:
224 lane = int(row[’ lane ’])
225 o lane = 3 − lane
226 if row[’ actrState ’] == ”2” and row[’crashed’] == ’true’:
227 lane = o lane
228 o lane = 3 − lane
229

230 # print(str (lane) + ”, ” + str(min(abs(x1 0 + v1∗curr t − curr x) , 43)) + ”, ” + str(
curr v) + ”, ” + str(v1))

231

232 idx line = (2−lane)∗20∗20∗43∗3 + (v1 − 15)∗20∗43∗3 + (curr v − 15)∗43∗3 + (min(abs
(x1 0 + v1∗curr t − curr x), 43) − 1)∗3 + int(row[’k chosen’])

233

234 infile = open(”helpers/data/other table .csv”)
235 r = csv.DictReader(infile)
236 for i in range(idx line −1):
237 next(r)
238 this row = next(r)
239

240 print (this row)
241

242 if row[’crashed’] == ’false’ :
243 writer .writerow({ ’ t end’ : row[’ t ’], ’type’ : ’2’ , ’v’ : row[’v’], ’crashed’ : ’0’ , ’

lane ’ : o lane , ’ x t 1 ’ : this row [’p x(1) ’], ’ x t 2 ’ : this row [’p x(2) ’], ’ x t 3 ’ : this row
[’p x(3) ’], ’ y t 1 ’ : this row [’p y(1) ’], ’ y t 2 ’ : this row [’p y(2) ’], ’ y t 3 ’ : this row [’
p y(3) ’], ’ y t 4 ’ : this row [’p y(4) ’], ’ y t 5 ’ : this row [’p y(5) ’], ’ y t 6 ’ : this row [’p y
(6) ’], ’ y t 7 ’ : this row [’p y(7) ’]})

244 else :
245 writer .writerow({ ’ t end’ : str (int (row[’ t ’]) + 6), ’type’ : ’2’ , ’v’ : row[’v’], ’

crashed’ : ’1’ , ’ lane ’ : o lane , ’ x t 1 ’ : this row [’bad p x(1)’], ’ x t 2 ’ : this row [’bad p x
(2)’], ’ x t 3 ’ : this row [’bad p x(3)’], ’ y t 1 ’ : this row [’bad p y(1)’], ’ y t 2 ’ : this row
[’bad p y(2)’], ’ y t 3 ’ : this row [’bad p y(3)’], ’ y t 4 ’ : this row [’bad p y(4)’], ’ y t 5 ’ :

this row [’bad p y(5)’], ’ y t 6 ’ : this row [’bad p y(6)’], ’ y t 7 ’ : this row [’bad p y(7)’
]})

246

247 next change lanes = False
248

160

249

250 new labels = multi transform label file (states file , labels file , new states file)
251 multi generate sample path (new states file , adv file , new labels , ”%s/trace.txt”%args.path)
252 multi generate trace from file (”%s/trace.txt”%args.path, args .v1, args .x1 0, ”%s/%s”%(args.

path,args.output))
253 if args . clear :
254 os.system(”rm −f %s/trace.txt”%args.path)

File B.9 helpers/simulate.py

1 # SIMULATE − Given a trace, simulate it.
2

3 # Author: Francisco Girbal Eiras , MSc Computer Science
4 # University of Oxford, Department of Computer Science
5 # Email: francisco . eiras@cs .ox.ac.uk
6 # 23−Jun−2018; Last revision: 23−Jun−2018
7

8 import pygame
9 import sys , os, csv , argparse , subprocess

10 import numpy as np
11

12 parser=argparse.ArgumentParser(
13 description =’’’Given some initial conditions , obtain a sample trace and simulate it . ’’’)
14 parser .add argument(’v’, type=int, default =29, help=’ Initial velocity of the vehicle . ’)
15 parser .add argument(’v1’, type=int, default =30, help=’ Initial velocity of the other vehicle . ’)
16 parser .add argument(’x1 0’, type=int, default =15, help=’ Initial position of the other vehicle .

’)
17 parser .add argument(’trace’ , type=str, help=’Trace file to be read. ’)
18 parser .add argument(’−x’, ’−−times’, type=float, default =1, help=’Execution is X times faster .

’)
19 args=parser. parse args ()
20

21 v = args.v
22 v1 = args.v1
23 x1 0 = args.x1 0
24 trace = args. trace
25 speed = args.times
26

27 # Helper functions
28 image library = {}
29 def get image(path):
30 global image library
31 image = image library .get(path)
32 if image == None:
33 canonicalized path = path.replace(’/’ , os.sep) . replace (’\\’ , os.sep)
34 image = pygame.image.load(’helpers/graphics/’ + canonicalized path)
35 if path == ”background.png”:
36 image = pygame.transform.scale(image, (1000,400))
37 if path == ”car red.png” or path == ”car grey.png”:
38 image = pygame.transform.scale(image, (20,11))
39 image library [path] = image
40 return image
41

42 def render centered (screen , text , crashed font , color) :
43 label = crashed font. render(text , 1, color)
44 size = crashed font. size (text)
45 screen . blit (label , (500 − size [0]/2.0, 200 − size [1]/2.0))
46

47 def detect crash (x1, y1, x2, y2, w, h):

161

48 top1 = [x1 − w/2, y1 − h/2]
49 top2 = [x2 − w/2, y2 − h/2]
50 return not (top1[0] + w < top2[0] or top1[1] + h < top2[1] or top1[0] > top2[0] + w or top1

[1] > top2[1] + h)
51

52 # Main
53

54 pygame.init ()
55 pygame.display . set caption (’Sample Path Simulation’)
56 screen = pygame.display.set mode((1000,400))
57 myfont = pygame.font.SysFont(”monospaced”, 20)
58 crashed font = pygame.font.SysFont(”monospaced”, 45)
59 time font = pygame.font.SysFont(”monospaced”, 60)
60

61 csvfile = open(trace)
62 reader = csv.DictReader(csvfile)
63 comm = next(reader)
64

65 # Read the first command
66 t init = 0
67 x init = 0
68 y init = 1.8
69 t end = int(comm[’t end’])
70 type comm = int(comm[’type’])
71 curr v = int(comm[’v’])
72 crashed = bool(int(comm[’crashed’]))
73 x coeffs = [float (comm[’x t 1’]) , float (comm[’x t 2’]) , float (comm[’x t 3’])]
74 y coeffs = [float (comm[’y t 1’]) , float (comm[’y t 2’]) , float (comm[’y t 3’]) , float (comm[’

y t 4’]) , float (comm[’y t 5’]) , float (comm[’y t 6’]) , float (comm[’y t 7’])]
75

76 # Setup of the other variables
77 x0 = x1 0
78 v0 = v1
79

80 t = 0.0
81 deltaT = 0.05
82 scaleX = 2
83 scaleY = 5
84 c height = 9
85 c width = 20
86 actual c width = 1.1∗4.8
87 actual c height = 1.1∗1.9
88

89 x = x init
90 y = y init
91

92 update action = False
93 permanent = False
94 force crash = False
95

96 while True:
97 for event in pygame.event.get() :
98 if event.type == pygame.QUIT:
99 pygame.quit()

100 quit ()
101 if event.type == pygame.KEYDOWN and event.key == pygame.K SPACE:
102 update action = not update action
103

104 screen . fill ((255,255,255))

162

105 screen . blit (get image(’background.png’), (0, 0))
106

107 screen . blit (get image(’ car red .png’) , (x∗scaleX − c width/2, 218 − y∗scaleY − c height/2))
108

109 # Other vehicle
110 screen . blit (get image(’ car grey .png’) , ((x0 + t∗v0)∗scaleX − c width/2, 218 − 1.8∗scaleY −

c height/2))
111

112 # Display info
113 time label = time font. render(”%2.1fs”%t, 1, (0,0,0))
114 screen . blit (time label , (175, 35))
115

116 main vahicle label = myfont.render(”Main vehicle”, 1, (128,128,128))
117 screen . blit (main vahicle label , (325, 25))
118

119 x label = myfont.render(”x Position : %dm”%x, 1, (0,0,0))
120 screen . blit (x label , (325, 45))
121

122 y label = myfont.render(”y Position : %.2fm”%y, 1, (0,0,0))
123 screen . blit (y label , (325, 65))
124

125 other vahicle label = myfont.render(”Other vehicle”, 1, (128,128,128))
126 screen . blit (other vahicle label , (475, 25))
127

128 x label = myfont.render(”x Position : %dm”%(x0 + t∗v0), 1, (0,0,0))
129 screen . blit (x label , (475, 45))
130

131 y label = myfont.render(”y Position : 1.8m”, 1, (0,0,0))
132 screen . blit (y label , (475, 65))
133

134 if detect crash (x,y ,(x0 + t∗v0) ,1.8, actual c width , actual c height) == True or force crash
== True:

135 render centered (screen , ”Crashed”, crashed font , (0,0,0))
136 update action == False
137 permanent = True
138

139 # Main vehicle
140 if update action == True and permanent == False:
141 if int (np. floor (round(t,2))) == t end:
142 if crashed == True:
143 permanent = True
144 force crash = True
145 else :
146 try :
147 comm = next(reader)
148 except:
149 update action = False
150 permanent = True
151 continue
152

153 # Read the next command
154 t init = t
155 x init = x
156 y init = y
157 t end = int(comm[’t end’])
158 type comm = int(comm[’type’])
159 curr v = int(comm[’v’])
160 crashed = bool(int(comm[’crashed’]))
161 x coeffs = [float (comm[’x t 1’]) , float (comm[’x t 2’]) , float (comm[’x t 3’])]

163

162 y coeffs = [float (comm[’y t 1’]) , float (comm[’y t 2’]) , float (comm[’y t 3’]) , float (
comm[’y t 4’]) , float (comm[’y t 5’]) , float (comm[’y t 6’]) , float (comm[’y t 7’])]

163

164 if int (np. floor (round(t,2))) < t end:
165 if type comm == 1:
166 x = x + curr v∗deltaT
167 elif type comm == 2:
168 curr t = t − t init
169 x = x init + (x coeffs [0]∗ curr t ∗∗2 + x coeffs [1]∗ curr t + x coeffs [2])
170 y = (y coeffs [0]∗ curr t ∗∗6 + y coeffs [1]∗ curr t ∗∗5 + y coeffs [2]∗ curr t ∗∗4 + y coeffs

[3]∗ curr t ∗∗3 + y coeffs [4]∗ curr t ∗∗2 + y coeffs [5]∗ curr t + y coeffs [6])
171

172 if x >= 500 or t >= 30:
173 update action = False
174 permanent = True
175

176 t = t + deltaT
177

178 elif crashed == False and update action == False and permanent == False:
179 if x == 0:
180 render centered (screen , ”Press SPACE to start”, crashed font , (0,0,0))
181 else :
182 render centered (screen , ”Press SPACE to continue”, crashed font , (0,0,0))
183 elif crashed == False and permanent == True:
184 render centered (screen , ”Done”, crashed font, (0,0,0))
185

186 pygame.display . flip ()
187 pygame.time.wait(int(1000∗deltaT/speed))
188

189 pygame.quit()

B.4 Prism Automatic Model Checker (Python)

File B.10 automatic model checker.py

1 # AUTOMATIC MODEL CHECKER − Executes the script model generator.py
2 # for some given parameters in order to build the model and perform
3 # model checking subquentially .
4

5 # Author: Francisco Girbal Eiras , MSc Computer Science
6 # University of Oxford, Department of Computer Science
7 # Email: francisco . eiras@cs .ox.ac.uk
8 # 13−Jul−2018; Last revision: 13−Jul−2018
9

10 import sys , os, subprocess , csv , argparse
11 from datetime import datetime
12 startTime = datetime.now()
13

14 parser=argparse.ArgumentParser(
15 description =’’’Executes the script model generator.py for some given parameters in order

to build the model and perform model checking subquentially . ’’’)
16 parser .add argument(’ properties file ’ , type=str, help=’File of the properties to be checked (

PCTL or LTL).’)
17 parser .add argument(’v’, type=int, default =29, help=’ Initial velocity of the vehicle . ’)
18 parser .add argument(’v1’, type=int, default =30, help=’ Initial velocity of the other vehicle . ’)
19 parser .add argument(’x1 0’, type=int, default =15, help=’ Initial position of the other vehicle .

’)

164

20 parser .add argument(’−−path’, ’−p’, type=str, default =’ gen files ’ , help=’Path where the
generated files will be saved. ’)

21 parser .add argument(’−−clean’, ’−c’, action=”store true”, help=’If set , then generated files (
model and individual results) will be maintained. ’)

22 args=parser. parse args ()
23

24 types = [’ aggressive ’ , ’average’ , ’ cautious ’]
25 res = {}
26

27 properties file = args. properties file
28 v = args.v
29 v1 = args.v1
30 x1 0 = args.x1 0
31 cleaning up = not args. clean
32 path = args.path
33

34 num properties = sum(1 for line in open(”%s”%properties file))
35 with open(”%s”%properties file) as f1 :
36 props = f1. readlines ()
37 props = [x. strip () for x in props]
38

39 for driver type in range(1,4) :
40 print (’−−−−−− %s driver −−−−−−’%types[driver type−1])
41

42 filename = ”gen model %s %s %s %s”%(driver type,v,v1,x1 0)
43 r filename = ” results %s %s %s %s”%(driver type,v,v1,x1 0)
44

45 # Construct the file
46 print (’Generating the model ... ’)
47 os.system(’python3 ../model/mdp generator.py ../model/model tables/control table .csv ../

model/model tables/acc table.csv ../ model/model tables/dm table.csv %s %s %s %s −−
filename %s > /dev/null’%(driver type,v,v1,x1 0,filename))

48

49 print (’ Building the model and performing model checking ... ’)
50 subprocess .run(”prism %s.pm %s −exportresults %s/%s.txt −javamaxmem 4g −cuddmaxmem 2g

”%(filename, properties file, path, r filename), shell=True)
51

52 print (’Obtaining the results ... ’)
53

54 f = open(”%s/%s.txt”%(path, r filename), ”r”)
55

56 if num properties == 1:
57 f . readline ()
58 probability = f. readline ()
59 f . close ()
60

61 probability = float(probability [:−1])
62 res [driver type] = [props [0], probability]
63 else :
64 f . readline ()
65 f . readline ()
66 probability = f. readline ()
67

68 probability = float(probability [:−1])
69 res [driver type] = [[props [0], probability]]
70

71 for i in range(1,num properties) :
72 f . readline ()
73 f . readline ()

165

74 f . readline ()
75 probability = f. readline ()
76

77 probability = float(probability [:−1])
78 res [driver type]. append([props[i], probability])
79

80 f . close ()
81

82 if cleaning up == True:
83 print (’Cleaning up ... ’)
84 os.system(’rm %s.pm’%filename)
85 # os.system(’rm %s/%s.txt’%(path,r filename))
86

87 with open(’%s/r %s %s %s.csv’%(path,v,v1,x1 0), ’w’) as csvfile :
88 fieldnames = [’ type driver ’ , ’ property ’ , ’ probability ’]
89 writer = csv.DictWriter(csvfile , fieldnames=fieldnames)
90

91 writer . writeheader ()
92 for key, val in res . items() :
93 for propty in val :
94 writer .writerow({ ’ type driver ’ : key, ’ property ’ : propty [0], ’ probability ’ : propty [1]})
95

96 # for driver type in range(1,4) :
97 # r filename = ” results %s %s %s %s”%(driver type,v,v1,x1 0)
98 # os.system(’rm %s/%s.txt’%(path,r filename))
99

100 print (’Done.’)
101 print (datetime.now() − startTime)

166

Appendix C

Code for the Experimental Results
and Evaluation

C.1 Plot Generator for experiments with Human

Driver Model (Python)

File C.1 plots.py

1 # PLOTS − Generate some relevant plots that relate to the performance
2 # of different drivers .
3

4 # Author: Francisco Girbal Eiras , MSc Computer Science
5 # University of Oxford, Department of Computer Science
6 # Email: francisco . eiras@cs .ox.ac.uk
7 # 5−Jun−2018; Last revision: 17−Jul−2018
8

9 import sys , os, random, glob, csv , subprocess , itertools
10 import matplotlib . pyplot as plt
11 import numpy as np
12 from mpl toolkits .mplot3d import Axes3D
13 from matplotlib import cm
14 import matplotlib as mpl
15

16 plt . rc(’ text ’ , usetex=True)
17 plt . rc(’ font ’ , family=’ serif ’)
18 plt . rc(’ font ’ , size =24)
19

20 # Generate samples for some of the graphs
21 # seq = True iff two out of (v, v1, x1 0) are set
22 #
23 def generate samples(N, ∗args , ∗∗kwargs):
24 v set = kwargs.get(’v’ , None)
25 v1 set = kwargs.get(’v1’ , None)
26 x1 0 set = kwargs.get(’x1 0’ , None)
27 path = kwargs.get(’path’ , None)
28 seq = bool(kwargs.get(’seq’ , False))
29

167

30 v count = 15
31 v1 count = 15
32 x1 0 count = 10
33

34 for i in range(1,N+1):
35 while 1:
36 if v1 set == None and seq == False:
37 v1 = random.randint(15,34)
38 elif v1 set == None and seq == True:
39 v1 = v1 count
40 v1 count = v1 count + 1
41 else :
42 v1 = int(v1 set)
43

44 if v set == None and seq == False:
45 v = random.randint(15,34)
46 elif v set == None and seq == True:
47 v = v count
48 v count = v count + 1
49 else :
50 v = int(v set)
51

52 if x1 0 set == None and seq == False:
53 x1 0 = random.randint(10,80)
54 elif x1 0 set == None and seq == True:
55 x1 0 = x1 0 count
56 x1 0 count = x1 0 count + 1
57 else :
58 x1 0 = int(x1 0 set)
59

60 if v count > 35 or v1 count > 35 or x1 0 count > 81:
61 return
62

63 if path == None:
64 if not os.path. exists (”%s/r %s %s %s.csv”%(path,v,v1,x1 0)):
65 break
66 else :
67 if not os.path. exists (”%s/r %s %s %s.csv”%(path,v,v1,x1 0)):
68 break
69

70 print (’[%d/%d]: Evaluating drivers for v = %d, v1 = %d, x1 0 = %d...’%(i,N,v,v1,x1 0))
71 if path == None:
72 proc = subprocess.Popen(’python3 storm model checker.py properties . pctl %d %d %d’%(v,

v1,x1 0), stderr=subprocess.PIPE, shell=True)
73 else :
74 proc = subprocess.Popen(’python3 storm model checker.py properties . pctl %d %d %d −−

path %s’%(v,v1,x1 0,path), stderr=subprocess.PIPE, shell=True)
75 output = str(proc. stderr .read())
76

77

78 def generate combination samples(vs , v1s, x1 0s , p):
79 sz = len(vs)∗len(v1s)∗len(x1 0s)
80 print (’ Evaluating %d combinations... ’%sz)
81

82 for v in vs :
83 for v1 in v1s:
84 for x1 0 in x1 0s :
85 print (’v = %d, v1 = %d, x1 0 = %d:’%(v,v1,x1 0))
86

168

87 if os.path. exists (”%s/r %d %d %d.csv”%(p,v,v1,x1 0)):
88 continue
89

90 proc = subprocess.Popen(’python3 storm model checker.py properties . pctl %d %d %d −−
path %s’%(v,v1,x1 0,p), stderr=subprocess.PIPE, shell=True)

91 output = str(proc. stderr .read())
92

93

94 def read files to dict (path):
95 props dict = [{},{},{}]
96

97 os. chdir (”%s/”%path)
98 for file in glob.glob(”∗.csv”):
99 with open(file) as csvfile :

100 reader = csv.DictReader(csvfile)
101 for row in reader :
102 if row[”property”] in props dict [int (row[” type driver ”])−1].keys() :
103 props dict [int (row[” type driver ”])−1][row[”property”]]. append(float(row[” probability

”]))
104 else :
105 props dict [int (row[” type driver ”])−1][row[”property”]] = [float (row[” probability ”])]
106

107 return props dict
108

109

110 def safety plots (p, v1 in , x1 0 in) :
111 # generate samples(20, v1=v1 in, x1 0=x1 0 in, path=p, seq=True)
112

113 x = [];
114 y = [[],[],[]];
115

116 os. chdir (”%s/”%p)
117 for file in glob.glob(”∗.csv”):
118 x.append(int(str (file) . split (’ ’) [1]))
119

120 with open(file) as csvfile :
121 reader = csv.DictReader(csvfile)
122 for row in reader :
123 if row[”property”] == ’P=? [F crashed]’:
124 y[int (row[” type driver ”])−1].append(float(row[” probability ”]))
125

126 labels = [”Aggressive”, ”Average”, ”Cautious”]
127

128 for i in range(0,3) :
129 new x, new y = zip(∗sorted(zip(x, y[i])))
130

131 line = plt. plot (new x, new y, label =labels [i], marker=”s”)
132

133 plt . legend(loc=’upper left ’ , fontsize =18)
134

135 plt . ylabel (’P$ {=?}$ [F crashed]’, fontsize =18)
136 plt . xlabel (’v [m/s]’, fontsize =18)
137 # plt. title (’ Safety property for $v 1 = %d$, $x {1,0} = %d$’%(v1 in, x1 0 in))
138 plt . xticks (np.arange(min(new x)−1, max(new x)+1, 2))
139

140 plt . subplots adjust (right =0.95, top=0.95, left =0.19, bottom=0.16)
141 plt .show()
142

143

169

144 def safety 3D plots (p):
145 # generate combination samples(np.linspace (20, 30, 11), np. linspace (15, 25, 11), [50], p)
146

147 x = [];
148 y = [];
149 z = [[],[],[]];
150

151 os. chdir (”%s/”%p)
152 for file in glob.glob(”∗.csv”):
153 x.append(int(str (file) . split (’ ’) [1]))
154 y.append(int(str (file) . split (’ ’) [2]))
155

156 with open(file) as csvfile :
157 reader = csv.DictReader(csvfile)
158 for row in reader :
159 if row[”property”] == ’P=? [F crashed]’:
160 z[int (row[” type driver ”])−1].append(float(row[” probability ”]))
161

162 fig = plt. figure ()
163 ax = fig .add subplot(111, projection =’3d’)
164

165 line = ax. plot trisurf (x, y, z [0], label =”Aggressive”, linewidth =0.2, antialiased =True,
cmap=cm.viridis)

166 line = ax. plot trisurf (x, y, z [1], label =”Average”, linewidth=0.2, antialiased =True, cmap=
cm.plasma)

167 line = ax. plot trisurf (x, y, z [2], label =”Cautious”, linewidth=0.2, antialiased =True, cmap
=cm.inferno)

168

169 ax. xaxis . axinfo [’ label ’][’ space factor ’] = 3.0
170 ax. yaxis . axinfo [’ label ’][’ space factor ’] = 3.0
171 ax. zaxis . axinfo [’ label ’][’ space factor ’] = 3.0
172

173 ax. set xlabel (’v [m/s]’)
174 ax. set ylabel (’v$ 1$ [m/s]’)
175 ax. set zlabel (’P$ {=?}$ [F crashed]’)
176

177 fake2Dline1 = mpl. lines .Line2D ([0],[0], linestyle =”none”, c=’b’, marker = ’o’)
178 fake2Dline2 = mpl. lines .Line2D ([0],[0], linestyle =”none”, c=’b’, marker = ’o’)
179 fake2Dline3 = mpl. lines .Line2D ([0],[0], linestyle =”none”, c=’b’, marker = ’o’)
180 ax.legend ([fake2Dline1 , fake2Dline2 , fake2Dline3], [’ Aggressive ’ , ’Average’, ’Cautious’],

numpoints = 1)
181

182 # ax. set zticks (np.arange(np.min(z)+0.1, np.max(z), 0.1))
183 plt .show()
184

185

186 def liveness 2D plot (p, v in , v1 in , x1 0 in) :
187 # generate samples(1, v=v in, v1=v1 in, x1 0=x1 0 in, path=p)
188

189 x = [[],[],[]];
190 y = [[],[],[]];
191

192 with open(”%s/r %s %s %s.csv”%(p,v in,v1 in,x1 0 in)) as csvfile :
193 reader = csv.DictReader(csvfile)
194 for row in reader :
195 if ’P=? [F ((x = 500) & (t <’ in row[”property”]:
196 x val = int(row[”property”][25:27])
197 x[int (row[” type driver ”])−1].append(x val)
198 y[int (row[” type driver ”])−1].append(float(row[” probability ”]))

170

199

200 labels = [”Aggressive”, ”Average”, ”Cautious”]
201

202 for i in range(0,3) :
203 new x, new y = zip(∗sorted(zip(x[i], y[i])))
204

205 line = plt. plot (new x, new y, label =labels [i], marker=”s”)
206

207 plt . legend(loc=’lower right ’ , fontsize =18)
208

209 plt . ylabel (’P$ {=?}$ [F (x = 500) \& (t $<$ T) $||$ F (x = 500)]’, fontsize =16)
210 plt . xlabel (’T [s] ’ , fontsize =18)
211 # plt. title (’ Liveness property for $v = %d$, $v 1 = %d$, $x {1,0} = %d$’%(v in, v1 in,

x1 0 in))
212 plt . xticks (np.arange(min(new x)−1, max(new x)+1, 2))
213

214 plt . subplots adjust (right =0.95, top=0.95, left =0.17, bottom=0.16)
215 plt .show()
216

217

218 def safety box plot (p):
219 props dict = read files to dict (p)
220

221 vals = [[],[],[]]
222 vals [0] = props dict [0][’P=? [F crashed]’]
223 vals [1] = props dict [1][’P=? [F crashed]’]
224 vals [2] = props dict [2][’P=? [F crashed]’]
225

226 plt .boxplot(vals , labels =[”Aggressive”, ”Average”, ”Cautious”], whis=4)
227 plt . ylabel (’P$ {=?}$ [F crashed]’, fontsize =18)
228 # plt. title (’ Safety property ’)
229

230 plt . subplots adjust (right =0.95, top=0.95, left =0.17, bottom=0.12)
231 plt .show()
232

233

234 def analysis (p):
235 data = {}
236

237 os. chdir (”%s/”%p)
238 for file in glob.glob(”∗.csv”):
239 v = int(str (file) . split (’ ’) [1])
240

241 min T = 34
242 with open(file) as csvfile :
243 reader = csv.DictReader(csvfile)
244 for row in reader :
245 if ’P=? [F ((x = 500) & (t <’ in row[”property”] and float (row[” probability ”]) > 0:
246 T = int(row[”property”][25:27])
247 min T = min(min T, T)
248

249 if v in data.keys() :
250 data[v]. append(min T)
251 else :
252 data[v] = [min T]
253

254 x = []
255 y = []
256 ret d = {}

171

257

258 for k in data.keys() :
259 x.append(k)
260 y.append(np.floor(np.mean(data[k])))
261 ret d [k] = np.floor (np.mean(data[k]))
262

263 return ret d
264

265

266 def liveness box plot (T, p):
267 decision dict = analysis (p)
268

269 props dict = [{},{},{}]
270

271 for file in glob.glob(”∗.csv”):
272 v = int(str (file) . split (’ ’) [1])
273 if not (T >= decision dict[v] and T <= decision dict[v] + 3):
274 continue
275

276 with open(file) as csvfile :
277 reader = csv.DictReader(csvfile)
278 for row in reader :
279 if row[” probability ”] != ”inf” and ’P=? [F ((x = 500) & (t <’ in row[”property”] and

row[”property”] in props dict [int (row[” type driver ”])−1].keys() :
280 props dict [int (row[” type driver ”])−1][row[”property”]]. append(float(row[” probability

”]))
281 elif row[” probability ”] != ”inf” and ’P=? [F ((x = 500) & (t <’ in row[”property”]:
282 props dict [int (row[” type driver ”])−1][row[”property”]] = [float (row[” probability ”])]
283

284 ts = [[],[],[]]
285 time val = T
286 # Conditional properties
287 ts [0] = props dict [0][’P=? [F ((x = 500) & (t < %d)) || F (x = 500)]’%time val]
288 ts [1] = props dict [1][’P=? [F ((x = 500) & (t < %d)) || F (x = 500)]’%time val]
289 ts [2] = props dict [2][’P=? [F ((x = 500) & (t < %d)) || F (x = 500)]’%time val]
290

291 # Unconditional properties
292 # ts[0] = props dict [0][’ P=? [F ((x = 500) & (t < %d))]’%time val]
293 # ts[1] = props dict [1][’ P=? [F ((x = 500) & (t < %d))]’%time val]
294 # ts[2] = props dict [2][’ P=? [F ((x = 500) & (t < %d))]’%time val]
295

296 plt .boxplot(ts , labels =[”Aggressive”, ”Average”, ”Cautious”], whis=1.5)
297 plt . ylabel (’P$ {=?}$ [F (x = 500) \& (t $<$ %d) $||$ F (x = 500)]’%time val, fontsize=16)
298 # plt. ylabel (’P$ {=?}$ [F ((x = 500) \& (t $<$ %d))]’%time val)
299 # plt. title (’ Liveness property ’)
300 plt . ylim(−0.05,1.05)
301

302 plt . subplots adjust (right =0.95, top=0.95, left =0.17, bottom=0.12)
303 plt .show()
304

305

306 safety plots (’ plot1 ’ , 20, 35)
307 # safety plots (’ plot2 ’, 22, 40)
308 # safety 3D plots (’ plot3 ’)
309 # liveness 2D plot (’ plot4 ’, 21, 19, 70)
310 # liveness 2D plot (’ plot4 ’, 26, 22, 45)
311 # generate samples(250, path=”box plots”)
312 # safety box plot (”box plots”)
313 # liveness box plot (21, ”box plots”)

172

314 # liveness box plot (22, ”box plots”)

C.2 Plot Generator for experiments with the Deci-

sion Making and Full Control ADAS (Python)

File C.2 plots.py

1 # PLOTS − Generate some relevant plots that relate to the performance
2 # of the driver + the ADAS.
3

4 # Author: Francisco Girbal Eiras , MSc Computer Science
5 # University of Oxford, Department of Computer Science
6 # Email: francisco . eiras@cs .ox.ac.uk
7 # 13−Jul−2018; Last revision: 17−Jul−2018
8

9 import sys , os, random, glob, csv , subprocess , itertools
10 import matplotlib . pyplot as plt
11 import numpy as np
12 from mpl toolkits .mplot3d import Axes3D
13 from matplotlib import cm
14 from matplotlib import rcParams
15 import matplotlib as mpl
16

17 plt . rc(’ text ’ , usetex=True)
18 plt . rc(’ font ’ , family=’ serif ’)
19 plt . rc(’ font ’ , size =24)
20

21 # Generate samples for some of the graphs
22 # seq = True iff two out of (v, v1, x1 0) are set
23 #
24 def generate samples(N, ∗args , ∗∗kwargs):
25 v set = kwargs.get(’v’ , None)
26 v1 set = kwargs.get(’v1’ , None)
27 x1 0 set = kwargs.get(’x1 0’ , None)
28 path = kwargs.get(’path’ , None)
29 seq = bool(kwargs.get(’seq’ , False))
30

31 v count = 15
32 v1 count = 15
33 x1 0 count = 10
34

35 for i in range(1,N+1):
36 while 1:
37 if v1 set == None and seq == False:
38 v1 = random.randint(15,34)
39 elif v1 set == None and seq == True:
40 v1 = v1 count
41 v1 count = v1 count + 1
42 else :
43 v1 = int(v1 set)
44

45 if v set == None and seq == False:
46 v = random.randint(15,34)
47 elif v set == None and seq == True:
48 v = v count
49 v count = v count + 1

173

50 else :
51 v = int(v set)
52

53 if x1 0 set == None and seq == False:
54 x1 0 = random.randint(35,80)
55 elif x1 0 set == None and seq == True:
56 x1 0 = x1 0 count
57 x1 0 count = x1 0 count + 1
58 else :
59 x1 0 = int(x1 0 set)
60

61 if v count > 35 or v1 count > 35 or x1 0 count > 81:
62 return
63

64 if path == None:
65 if not os.path. exists (”%s/r %s %s %s.csv”%(path,v,v1,x1 0)):
66 break
67 else :
68 if not os.path. exists (”%s/r %s %s %s.csv”%(path,v,v1,x1 0)):
69 break
70

71 print (’[%d/%d]: Evaluating drivers for v = %d, v1 = %d, x1 0 = %d...’%(i,N,v,v1,x1 0))
72 if path == None:
73 os.system(’python3 automatic model checker.py properties / verification . pctl %d %d %d’%(

v,v1,x1 0))
74 else :
75 os.system(’python3 automatic model checker.py properties / verification . pctl %d %d %d

−−path %s’%(v,v1,x1 0,path))
76 # output = str(proc. stderr .read())
77

78

79 def generate combination samples(vs , v1s, x1 0s , p):
80 sz = len(vs)∗len(v1s)∗len(x1 0s)
81 print (’ Evaluating %d combinations... ’%sz)
82

83 for v in vs :
84 for v1 in v1s:
85 for x1 0 in x1 0s :
86 print (’v = %d, v1 = %d, x1 0 = %d:’%(v,v1,x1 0))
87

88 if os.path. exists (”%s/r %d %d %d.csv”%(p,v,v1,x1 0)):
89 continue
90

91 os.system(’python3 automatic model checker.py properties / safety . pctl %d %d %d −−
path %s’%(v,v1,x1 0,p))

92

93

94 def generate samples box plots (N):
95 n = 1
96 while n < N + 1:
97 I = random.randint(0,249)
98

99 f = open(’values. txt ’)
100 line = f. readline ()
101 i = 0
102 while i < I:
103 line = f. readline ()
104 i += 1
105

174

106 if os.path. exists (’ box plots/%s’%line):
107 continue
108

109 v = line . split (’ ’) [1]
110 v1 = line . split (’ ’) [2]
111 x1 0 = line . split (’ ’) [3][0:2]
112

113 print (str (n) + ”: v = ” + v + ”, v1 = ” + v1 + ”, x1 0 = ” + x1 0)
114

115 if os.system(’python3 automatic model checker.py properties / verification . pctl %s %s %s
−−path box plots’%(v,v1,x1 0)) != 0:

116 exit ()
117

118 n = n + 1
119

120

121 def read files to dict (path):
122 props dict = [{},{},{}]
123

124 os. chdir (”%s/”%path)
125 for file in glob.glob(”∗.csv”):
126 with open(file) as csvfile :
127 reader = csv.DictReader(csvfile)
128 for row in reader :
129 if row[”property”] in props dict [int (row[” type driver ”])−1].keys() :
130 props dict [int (row[” type driver ”])−1][row[”property”]]. append(float(row[” probability

”]))
131 else :
132 props dict [int (row[” type driver ”])−1][row[”property”]] = [float (row[” probability ”])]
133

134 return props dict
135

136

137 def safety plots (p, v1 in , x1 0 in) :
138 # generate samples(20, v1=v1 in, x1 0=x1 0 in, path=p, seq=True)
139

140 x = [];
141 y = [[],[],[]];
142

143 os. chdir (”%s/”%p)
144 for file in glob.glob(”∗.csv”):
145 x.append(int(str (file) . split (’ ’) [1]))
146

147 with open(file) as csvfile :
148 reader = csv.DictReader(csvfile)
149 for row in reader :
150 if row[”property”] == ’Pmin=? [F crashed]’:
151 y[int (row[” type driver ”])−1].append(float(row[” probability ”]))
152

153 labels = [”Aggressive”, ”Average”, ”Cautious”]
154

155 for i in range(0,3) :
156 new x, new y = zip(∗sorted(zip(x, y[i])))
157

158 line = plt. plot (new x, new y, label =labels [i], marker=”s”)
159

160 plt . legend(loc=’upper left ’ , fontsize =18)
161

162 plt . ylabel (’P$ {min=?}$ [F crashed]’, fontsize =18)

175

163 plt . xlabel (’v [m/s]’, fontsize =18)
164 # plt. title (’ Safety property for $v 1 = %d$, $x {1,0} = %d$’%(v1 in, x1 0 in))
165 plt . xticks (np.arange(min(new x)−1, max(new x)+1, 2))
166

167 plt . subplots adjust (right =0.95, top=0.95, left =0.19, bottom=0.16)
168 plt .show()
169

170

171 def safety 3D plots (p):
172 # generate combination samples(np.linspace (20, 30, 11), np. linspace (15, 25, 11), [50], p)
173

174 x = [];
175 y = [];
176 z = [[],[],[]];
177

178 os. chdir (”%s/”%p)
179 for file in glob.glob(”∗.csv”):
180 x.append(int(str (file) . split (’ ’) [1]))
181 y.append(int(str (file) . split (’ ’) [2]))
182

183 with open(file) as csvfile :
184 reader = csv.DictReader(csvfile)
185 for row in reader :
186 if row[”property”] == ’Pmin=? [F crashed]’:
187 z[int (row[” type driver ”])−1].append(float(row[” probability ”]))
188

189 fig = plt. figure ()
190 ax = fig .add subplot(111, projection =’3d’)
191

192 line = ax. plot trisurf (x, y, z [0], label =”Aggressive”, linewidth =0.2, antialiased =True,
cmap=cm.viridis)

193 line = ax. plot trisurf (x, y, z [1], label =”Average”, linewidth=0.2, antialiased =True, cmap=
cm.plasma)

194 line = ax. plot trisurf (x, y, z [2], label =”Cautious”, linewidth=0.2, antialiased =True, cmap
=cm.inferno)

195

196 ax. xaxis . axinfo [’ label ’][’ space factor ’] = 3.0
197 ax. yaxis . axinfo [’ label ’][’ space factor ’] = 3.0
198 ax. zaxis . axinfo [’ label ’][’ space factor ’] = 3.0
199

200 ax. set xlabel (’v [m/s]’)
201 ax. set ylabel (’v$ 1$ [m/s]’)
202 ax. set zlabel (’P$ {min=?}$ [F crashed]’)
203

204 fake2Dline1 = mpl. lines .Line2D ([0],[0], linestyle =”none”, c=’b’, marker = ’o’)
205 fake2Dline2 = mpl. lines .Line2D ([0],[0], linestyle =”none”, c=’b’, marker = ’o’)
206 fake2Dline3 = mpl. lines .Line2D ([0],[0], linestyle =”none”, c=’b’, marker = ’o’)
207 ax.legend ([fake2Dline1 , fake2Dline2 , fake2Dline3], [’ Aggressive ’ , ’Average’, ’Cautious’],

numpoints = 1)
208

209 # ax. set zticks (np.arange(np.min(z)+0.1, np.max(z), 0.1))
210 plt .show()
211

212

213 def liveness 2D plot (p, v in , v1 in , x1 0 in) :
214 # generate samples(1, v=v in, v1=v1 in, x1 0=x1 0 in, path=p)
215

216 x = [[],[],[]];
217 y = [[],[],[]];

176

218 pmin crashed = [0,0,0];
219

220 with open(”%s/r %s %s %s.csv”%(p,v in,v1 in,x1 0 in)) as csvfile :
221 reader = csv.DictReader(csvfile)
222 for row in reader :
223 if ’Pmin=? [F crashed]’ in row[”property”]:
224 pmin crashed[int (row[” type driver ”])−1] = float(row[” probability ”])
225

226 if ’Pmax=? [F (x=500 & t < ’ in row[”property”]:
227 x val = int(row[”property”][24:26])
228 x[int (row[” type driver ”])−1].append(x val)
229 y[int (row[” type driver ”])−1].append(float(row[” probability ”]))
230

231 labels = [”Aggressive”, ”Average”, ”Cautious”]
232

233 for i in range(0,3) :
234 for l in range(0, len(x[i])) :
235 y[i][l] = min(y[i][l]/(1−pmin crashed[i]) ,1)
236

237 for i in range(0,3) :
238 x[i]. append(27)
239 y[i]. append(1)
240

241 x[i]. append(28)
242 y[i]. append(1)
243

244 new x, new y = zip(∗sorted(zip(x[i], y[i])))
245

246 line = plt. plot (new x, new y, label =labels [i], marker=”s”)
247

248 plt . legend(loc=’lower right ’ , fontsize =18)
249

250 # plt. ylabel (’P$ {max=?}$ [F (x = 500) \& (t $<$ T)]/P$ {max=?}$ [F (x = 500)]’, fontsize
=15)

251 plt . ylabel (’$\zeta(T)$’, fontsize =18)
252 plt . xlabel (’T [s] ’ , fontsize =18)
253 # plt. title (’ Liveness property for $v = %d$, $v 1 = %d$, $x {1,0} = %d$’%(v in, v1 in,

x1 0 in))
254 plt . xticks (np.arange(min(new x)−1, max(new x)+1, 2))
255

256 plt . subplots adjust (right =0.95, top=0.95, left =0.19, bottom=0.16)
257 plt .show()
258

259

260 def safety box plot (p):
261 props dict = read files to dict (p)
262

263 vals = [[],[],[]]
264 vals [0] = props dict [0][’Pmin=? [F crashed]’]
265 vals [1] = props dict [1][’Pmin=? [F crashed]’]
266 vals [2] = props dict [2][’Pmin=? [F crashed]’]
267

268 plt .boxplot(vals , labels =[”Aggressive”, ”Average”, ”Cautious”], whis=4)
269 plt . ylabel (’P$ {min=?}$ [F crashed]’, fontsize =18)
270 # plt. title (’ Safety property ’)
271

272 plt . subplots adjust (right =0.95, top=0.95, left =0.17, bottom=0.12)
273 plt .show()
274

177

275

276 def analysis (p):
277 data = {}
278

279 os. chdir (”%s/”%p)
280 for file in glob.glob(”∗.csv”):
281 v = int(str (file) . split (’ ’) [1])
282

283 min T = 34
284 with open(file) as csvfile :
285 reader = csv.DictReader(csvfile)
286 for row in reader :
287 if ’Pmax=? [F (x=500 & t < ’ in row[”property”] and float(row[” probability ”]) > 0:
288 T = int(row[”property”][24:26])
289 min T = min(min T, T)
290

291 if v in data.keys() :
292 data[v]. append(min T)
293 else :
294 data[v] = [min T]
295

296 x = []
297 y = []
298 ret d = {}
299

300 for k in data.keys() :
301 x.append(k)
302 y.append(np.floor(np.mean(data[k])))
303 ret d [k] = np.floor (np.mean(data[k]))
304

305 return ret d
306

307

308 def liveness box plot (T, p):
309 decision dict = analysis (p)
310

311 props dict = [{},{},{}]
312

313 for file in glob.glob(”∗.csv”):
314 v = int(str (file) . split (’ ’) [1])
315 if not (T >= decision dict[v] and T <= decision dict[v] + 3):
316 continue
317

318 with open(file) as csvfile :
319 reader = csv.DictReader(csvfile)
320

321 pmin = [0,0,0]
322

323 for row in reader :
324 if ’Pmin=? [F crashed]’ in row[”property”]:
325 pmin[int(row[” type driver ”])−1] = float(row[” probability ”])
326

327 if pmin[int(row[” type driver ”])−1] == 1:
328 continue
329

330 if row[” probability ”] != ”inf” and ’Pmax=? [F (x=500 & t < ’ in row[”property”] and
row[”property”] in props dict [int (row[” type driver ”])−1].keys() :

331 props dict [int (row[” type driver ”])−1][row[”property”]]. append(float(row[” probability
”])/(1−pmin[int(row[” type driver ”])−1]))

178

332 elif row[” probability ”] != ”inf” and ’Pmax=? [F (x=500 & t < ’ in row[”property”]:
333 props dict [int (row[” type driver ”])−1][row[”property”]] = [float (row[” probability ”])

/(1−pmin[int(row[” type driver ”])−1])]
334

335 ts = [[],[],[]]
336 time val = T
337 # Conditional properties
338 # ts[0] = props dict [0][’ P=? [F ((x = 500) & (t < %d)) || F (x = 500)]’%time val]
339 # ts[1] = props dict [1][’ P=? [F ((x = 500) & (t < %d)) || F (x = 500)]’%time val]
340 # ts[2] = props dict [2][’ P=? [F ((x = 500) & (t < %d)) || F (x = 500)]’%time val]
341

342 # Unconditional properties
343 ts [0] = props dict [0][’Pmax=? [F (x=500 & t < %d)]’%time val]
344 ts [1] = props dict [1][’Pmax=? [F (x=500 & t < %d)]’%time val]
345 ts [2] = props dict [2][’Pmax=? [F (x=500 & t < %d)]’%time val]
346

347 plt .boxplot(ts , labels =[”Aggressive”, ”Average”, ”Cautious”], whis=1.5)
348 # plt. ylabel (’P$ {=?}$ [F ((x = 500) \& (t $<$ %d)) $||$ F (x = 500)]’%time val)
349 plt . ylabel (’$\zeta(%d)$’%time val, fontsize =18)
350 # plt. title (’ Liveness property ’)
351 plt . ylim(−0.05,1.05)
352

353 plt . subplots adjust (right =0.95, top=0.95, left =0.17, bottom=0.12)
354 plt .show()
355

356

357 safety plots (’ plot1 ’ , 20, 35)
358 # safety plots (’ plot2 ’, 22, 40)
359 # safety 3D plots (’ plot3 ’)
360 # liveness 2D plot (’ plot4 ’, 21, 19, 70)
361 # liveness 2D plot (’ plot4 ’, 26, 22, 45)
362 # generate samples(40, path=”box plots”)
363 # generate samples box plots(35)
364 # safety box plot (”box plots”)
365 # liveness box plot (21, ”box plots”)
366 # liveness box plot (22, ”box plots”)

179

Bibliography

[1] S. Singh, “Critical reasons for crashes investigated in the national motor vehicle

crash causation survey,” tech. rep., 2015.

[2] M. Burgess, “When does a car become truly autonomous? Levels

of self-driving technology explained.” https://www.wired.co.uk/article/

autonomous-car-levels-sae-ranking, Mar 2018 (accessed August 18, 2018).

[3] “Autopilot.” http://www.tesla.com/en_GB/autopilot, (accessed August 18,

2018).

[4] A. J. Hawkins, “Ford’s new driver-assist system isn’t Autopilot, but it’s a

step in the right direction.” http://www.theverge.com/2018/3/15/17126162/

ford-driver-assist-technology-copilot-360, Mar 2018 (accessed August

18, 2018).

[5] R. Lawler, “Tesla: Autopilot was engaged in fatal

Model X crash.” http://www.engadget.com/2018/03/30/

tesla-autopilot-model-x-crash-mountain-view/, Mar 2018 (accessed

August 18, 2018).

[6] “HWY18FH011 Preliminary Accident Report.” https://www.ntsb.gov/

investigations/AccidentReports/Pages/HWY18FH011-preliminary.aspx,

Jun 2018 (accessed August 18, 2018).

[7] C. Baier and J.-P. Katoen, Principles of model checking. MIT press, 2008.

[8] J. R. Anderson, The Architecture of Cognition. Psychology Press, 2013.

[9] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of driving

would it take to demonstrate autonomous vehicle reliability?,” Transportation

Research Part A: Policy and Practice, vol. 94, pp. 182–193, 2016.

180

[10] D. Sportillo, A. Paljic, M. Boukhris, P. Fuchs, L. Ojeda, and V. Roussarie, “An

immersive virtual reality system for semi-autonomous driving simulation: a com-

parison between realistic and 6-dof controller-based interaction,” in Proceedings

of the 9th International Conference on Computer and Automation Engineering,

pp. 6–10, ACM, 2017.

[11] S. Baltodano, S. Sibi, N. Martelaro, N. Gowda, and W. Ju, “The rrads plat-

form: a real road autonomous driving simulator,” in Proceedings of the 7th In-

ternational Conference on Automotive User Interfaces and Interactive Vehicular

Applications, pp. 281–288, ACM, 2015.

[12] M. Zhou, X. Qu, and S. Jin, “On the impact of cooperative autonomous ve-

hicles in improving freeway merging: a modified intelligent driver model-based

approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 18,

no. 6, pp. 1422–1428, 2017.

[13] A. Gruber, M. Gadringer, H. Schreiber, D. Amschl, W. Bösch, S. Metzner, and

H. Pflügl, “Highly scalable radar target simulator for autonomous driving test

beds,” in Radar Conference (EURAD), 2017 European, pp. 147–150, IEEE, 2017.

[14] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing and

validation,” SAE International Journal of Transportation Safety, vol. 4, no. 1,

pp. 15–24, 2016.

[15] J. Somers, “The coming software apocalypse.” http://www.theatlantic.com/

technology/archive/2017/09/saving-the-world-from-code/540393/, Sep

2017 (accessed August 18, 2018).

[16] M. Z. Kwiatkowska, “Model checking and strategy synthesis for stochastic games:

From theory to practice (invited talk),” in LIPIcs-Leibniz International Proceed-

ings in Informatics, vol. 55, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,

2016.

[17] B. Abbott, T. Bapty, C. Biegl, G. Karsai, and J. Sztipanovits, “Model-based

software synthesis,” IEEE Software, no. 3, pp. 42–52, 1993.

[18] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli, “Design of

embedded systems: Formal models, validation, and synthesis,” Proceedings of

the IEEE, vol. 85, no. 3, pp. 366–390, 1997.

181

[19] M. Mazo, A. Davitian, and P. Tabuada, “Pessoa: A tool for embedded controller

synthesis,” in International Conference on Computer Aided Verification, pp. 566–

569, Springer, 2010.

[20] T. Chen, M. Kwiatkowska, A. Simaitis, and C. Wiltsche, “Synthesis for multi-

objective stochastic games: An application to autonomous urban driving,” in

International Conference on Quantitative Evaluation of Systems, pp. 322–337,

Springer, 2013.

[21] D. Sadigh, K. Driggs-Campbell, A. Puggelli, W. Li, V. Shia, R. Bajcsy, A. L.

Sangiovanni-Vincentelli, S. S. Sastry, and S. A. Seshia, “Data-driven probabilistic

modeling and verification of human driver behavior,” 2014.

[22] N. Li, D. W. Oyler, M. Zhang, Y. Yildiz, I. Kolmanovsky, and A. R. Girard,

“Game theoretic modeling of driver and vehicle interactions for verification and

validation of autonomous vehicle control systems,” IEEE Transactions on control

systems technology, 2017.

[23] M. Kamali, L. A. Dennis, O. McAree, M. Fisher, and S. M. Veres, “Formal veri-

fication of autonomous vehicle platooning,” Science of Computer Programming,

vol. 148, pp. 88–106, 2017.

[24] P. Nilsson, O. Hussien, Y. Chen, A. Balkan, M. Rungger, A. Ames, J. Griz-

zle, N. Ozay, H. Peng, and P. Tabuada, “Preliminary results on correct-by-

construction control software synthesis for adaptive cruise control,” in Decision

and Control (CDC), 2014 IEEE 53rd Annual Conference on, pp. 816–823, IEEE,

2014.

[25] C. Lam, “Driver Assistance Using Cognitive Modelling and Strategy Synthesis,”

2017.

[26] D. D. Salvucci, “Modeling driver behavior in a cognitive architecture,” Human

factors, vol. 48, no. 2, pp. 362–380, 2006.

[27] P. Curzon, R. Rukšėnas, and A. Blandford, “An approach to formal verification

of human–computer interaction,” Formal Aspects of Computing, vol. 19, no. 4,

pp. 513–550, 2007.

[28] E. R. Boer and M. Hoedemaeker, “Modeling driver behavior with different de-

grees of automation: A hierarchical decision framework of interacting mental

182

models,” in Proceedings of the 17th European annual conference on human deci-

sion making and manual control, pp. 63–72, 1998.

[29] A. Liu and D. Salvucci, “Modeling and prediction of human driver behavior,” in

Intl. Conference on HCI, 2001.

[30] D. D. Salvucci and A. Liu, “The time course of a lane change: Driver control

and eye-movement behavior,” Transportation research part F: traffic psychology

and behaviour, vol. 5, no. 2, pp. 123–132, 2002.

[31] D. Salvucci, E. Boer, and A. Liu, “Toward an integrated model of driver behav-

ior in cognitive architecture,” Transportation Research Record: Journal of the

Transportation Research Board, no. 1779, pp. 9–16, 2001.

[32] I. Kotseruba and J. K. Tsotsos, “A review of 40 years of cognitive architec-

ture research: Core cognitive abilities and practical applications,” arXiv preprint

arXiv:1610.08602, 2016.

[33] R. Sun, “The importance of cognitive architectures: An analysis based on CLAR-

ION,” Journal of Experimental & Theoretical Artificial Intelligence, vol. 19, no. 2,

pp. 159–193, 2007.

[34] J. R. Anderson, M. Matessa, and C. Lebiere, “ACT-R: A theory of higher level

cognition and its relation to visual attention,” Human-Computer Interaction,

vol. 12, no. 4, pp. 439–462, 1997.

[35] T. Balke and N. Gilbert, “How do agents make decisions? A survey,” Journal of

Artificial Societies and Social Simulation, vol. 17, no. 4, p. 13, 2014.

[36] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker, “Automated verification

techniques for probabilistic systems,” in International School on Formal Methods

for the Design of Computer, Communication and Software Systems, pp. 53–113,

Springer, 2011.

[37] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model checking,” in

International School on Formal Methods for the Design of Computer, Commu-

nication and Software Systems, pp. 220–270, Springer, 2007.

[38] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of prob-

abilistic real-time systems,” in International conference on computer aided veri-

fication, pp. 585–591, Springer, 2011.

183

[39] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: Probabilistic symbolic

model checker,” in International Conference on Modelling Techniques and Tools

for Computer Performance Evaluation, pp. 200–204, Springer, 2002.

[40] “PRISM Manual | The PRISM Language | Example 1.” http://www.

prismmodelchecker.org/manual/ThePRISMLanguage/Example1, Dec 2010 (ac-

cessed August 18, 2018).

[41] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A storm is coming: A

modern probabilistic model checker,” in International Conference on Computer

Aided Verification, pp. 592–600, Springer, 2017.

[42] C. Baier, J. Klein, S. Klüppelholz, and S. Märcker, “Computing conditional

probabilities in Markovian models efficiently,” in International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, pp. 515–

530, Springer, 2014.

[43] T. Chen, V. Forejt, M. Kwiatkowska, A. Simaitis, and C. Wiltsche, “On stochas-

tic games with multiple objectives,” in International Symposium on Mathemat-

ical Foundations of Computer Science, pp. 266–277, Springer, 2013.

[44] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, “Model checking and the

state explosion problem,” in Tools for Practical Software Verification, pp. 1–30,

Springer, 2012.

[45] L. Li, T. J. Walsh, and M. L. Littman, “Towards a unified theory of state ab-

straction for MDPs.,” in ISAIM, 2006.

[46] A. Mohr, “A survey of state abstraction techniques for markov decision pro-

cesses,”

[47] H. C. Manual, “Highway capacity manual,” Washington, DC, vol. 11, 2000.

[48] P. Shinners, “pygame.” https://github.com/pygame/pygame, 2011.

[49] J. Carr, “State ”keep right” laws.” http://www.mit.edu/~jfc/right.html,

(accessed August 18, 2018).

[50] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis, “PRISM-

games: A model checker for stochastic multi-player games,” in International

Conference on Tools and Algorithms for the Construction and Analysis of Sys-

tems, pp. 185–191, Springer, 2013.

184

