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Why is Certified Machine Learning
important?
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Safety in Human interaction

Interaction with humans — makes them safety-
critical situations

Requires guarantees to be given about their
performance!

Minimum guarantee is robustness, /.e., the ability to
tolerate small input perturbations.




Safety in Human interaction — Adv. Robustness (?)

* The existence of adversarial examples is well
known, particularly in image classification.

» /st a safety problem?

* They are an interesting phenomenon, potentially
attributed to non-robust/spurious features.

» Certification is still important

O Distill

A Discussion of
Adversarial Examples Are Not
Bugs, They Are Features

PPPPPPPPP

Aug. 6, 2019 10.23915/distil.00019

On May 6th, Andrew llyas and colleagues published a paper [1] outlining two sets of

experiments. Firstly, they showed that models trained on adversarial examples can transfer

tn real data and cernndlv that madele trained an a datacat darived fram the renracentatinne
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Correctness of Machine Learning based-Systems

ML is used within systems to replace experts/speed-
up processes.

E.g., to solve PDEs or knowledge distillation.

Deployed in real-world, but can we trust it to behave
correctly?

Total loss

1-2
:l hard loss jj

Certified machine learning could help establish
reliability /correctness of these components.
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Correctness of ML-based Systems



Physical PDEs and Where to Find Them
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Aerodynamics (e.g., Euler’s Thermodynamics (e.g., Heat
equation) equation)

Among many others...

Earth and Space Sciences
(e.g., turbulence in 2-D
Navier-Stokes)

11



& o UNIVERSITY OF

‘<’ OXFORD

Nonlinear (Physical) Partial Differential Equations

solution nonlinear spatial differential operator

/|

owu(t,x) + Nu](t,x) =0, xe€D,tel0,T]

residual [

domain

1. Initial condition: u(0,z) = ug(z)

2. Robin boundary conditions: au(t,x) + bohu(t,z) = up(t,x) a,beR
x € 0D

12



PDE example: Diffusion-Sorption Equation

* Applications in groundwater contaminant transportation

1D Diffusion-Sorption:
oru(t,x) — D/R(u(t,x))0z2u(t,z) =0

where

R(u(t,x)) =1+ (1(;)@ psknpu™ "1t x)

for physical constants D, ¢, ps, k,ns, and:

u(0,z) = u(t,0) =0, wu(t,1) = Ddu(t,1)

v
riiifeg
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Issue: Solving for u(t, x) is
computationally expensive

Solution: Use NNs to approximate it



Physics-Informed Neural Networks (PINNs)
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Approximate solution using a neural network, ug(t,x) ~ u(t, )

Take the residual evaluated for ug as the network fo (t, CC) = Orug (t, CC) +N[U9](t7 CU)

/

PINN

Train both networks jointly using a loss evaluated at collocation points IP (i.e. points in the domain):

L= Z\anz—u@Ox +Z u(t,x) — ug(t, )] —I—Z\fgtx

x€Pg (t,x)ePy (t,x)€ePy

initial conditions boundary conditions residual

Evaluate empirically by comparing w4(t, ) to the solution obtained by a numerical solver

15
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PINN: 1D Diffusion-Sorption Equation

* Inference times on 2 core CPU + 1 GPU (NVIDIA V100): 1.00
: 0.75
Numerical Solver PINN [Takamoto et al. 2022]
] 0.50
59.83 s 27x10%s
- 0.25
* PINN average ¢2 solution error is 9.9 x 102 compared to
numerical solver 0 200 400 0.00
« Valid PDE solution must satisfy fy(t,z) =0
* /s it satistied across the domain? Jo-2
104 Uniform Samples 106 Uniform Samples 107
max | fg|? 1.1 x 1033 21.09 10-8

\ / 0 200 400
t

@ 16



How can we be confident errors are small
enough across the entire domain?



Defining Correctness Conditions for PINNs (PINN, 2023)

* Intuitively, a PINN is a correct approximation of the underlying PDE if:
1. The solution satisfies the initial conditions to a reasonable degree
2. The solution satisfies the boundary conditions to a reasonable degree

3. The norm of the PINN output is small enough

* Formally, for a D dimensional spatial input % € D, and solution/PINN input x = (¢,X) :

Definition 1 (Correctness Conditions for PINNs). ug : [0, 7] X D — R is a &g, 6y, £-globally correct
approximation of the exact solution u : [0,T] x D — R if:

@ max fug(0, %) — uo(R)|? < do

t, %) + bOpug(t,X) — up(t,%)|* < &,
@ | max  laus(t, %) + bOuug(t, %) — w(t, %) < b,

@ max|fo(x)P <e.
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Scalable Adversarial Robustness Verification/Certification

 Complete vs. incomplete methods:

» (Can it certify a ResNet50? If YES — incomplete.

* "“Sound, but incomplete” methods: - ;
* Bound propagation (e.g., DiffAl, IBP) i‘"n_' _'__’

« Convex relaxation optimization-based methods
(e.g. CROWN) |

Conv
RelLU
Conv
RelLU

*  Smoothing-based methods (e.g. randomized
smoothing)

19
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Verification of Neural Networks

 CROWN/a-CROWN [Zhang et. al 2018, Xu et. al 2020]

specification (assume identity)

e

min  s(g(x))

input domain
P y el e

x —» Linear(W(), b(") Linear(W®), b)) —>  g(x)

i
¢

. . AL L :
* Relax network to a linear program — solve it in closed form: melélA x+a’ =1[, < melg g(x)
X X

- : . e laxed bl
* Apply it to ug and fy using the previous specifications relaxed probiem

20
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Correctness Certification of PINNs (PINN, 2023)

Definition 1 (Correctness Conditions for PINNs). ug : [0,7] X D — R is a &g, 8y, e-globally correct
approximation of the exact solution u : [0,T] x D — R if:

max |ug (0, X) — uo(X)|? < do,
XE

o oy NP
x te[of%ficeap|au9(t,x)+b8nu9(t,x) up(t,X)|? < 8,

X max|fo(x)]* <e.

*  Applying CROWN/a-CROWN to boundary/residual conditions.

XK Architecture is completely different - fo is a nonlinear function of partial derivatives of ug

X Regression problem — bounds might be too loose to be informative

21



0-CROWN: Bounding Derivatives of us and fs (PINN, 2023)

Sas UNIVERSITY OF

=) OXFORD

* Ug is bound using CROWN [Zhang et al. 2018]; partial derivatives require purpose-built efficient solution

WBa |€ dyup

o o) L)
x < Wiasb® 1 of) [— WDa s b®) | ug
1st (Theorem 1) and 2nd |
(Theorem 2) linear bounding of ces |
. . . X Theorem 1
partial derivatives Outa |
‘> od(a) [« daga) [€| AWD |« B2 8,2 Y
- . . 8. 20 Ac |[€&— .. <«—
Hybrid scheme with complexity s
O(L) instead of O(L?) from
[Xu et al. 2020] o
o,//(a)
Global bounds computed in aoe €| dag@) |[¢] AW .
] . ..
close-form (similarly to [Zhang w e
et al. 2018])
8xlgz(°) Ac

« fois linearly bounded using McCormick envelopes; global bounds computed in close-form

p) gz(l)

’ Relaxed Nonlinearity ‘

CROWN/ OX-CROWN

\ -«

Back-propagation path ‘

O-CROWN

<
>»

Back-propagation path
Forward substitution

Back-propagation path
Forward substitution

Theorem 2

) zZ(Lfl)

wDa Oy2ug
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Correctness Certification of PINNs (PINN, 2023)

Definition 1 (Correctness Conditions for PINNs). ug : [0,7] X D — R is a &g, 8y, e-globally correct
approximation of the exact solution u : [0,T] x D — R if:

I’{lea% |’U’9(01§() - uo(fc)|2 < do,

o oy NP
x te[o?ficeap|au9(t,x)+b8nu9(t,x) up(t,X)|? < 8,

X max|fo(x)]* <e.

*  Applying CROWN/a-CROWN to boundary/residual conditions.

Architecture is completely different - fo is a nonlinear function of partial derivatives of g

X Regression problem — bounds might be too loose to be informative

/

Greedy Input Branching

23



Correctness Certification of PINNs (PINN, 2023)
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Definition 1 (Correctness Conditions for PINNs). ug : [0,7] X D — R is a &g, 8y, e-globally correct
approximation of the exact solution u : [0,T] x D — R if:

I’{lea% |’U,9(O,)A() - uo(f{)|2 < do,

tG[O%“l]a;c(ecsD |aug (2, X) + bOnug (¢, %) — up(t, f‘)|2 < dp,

max |fy(x)|* <.

Applying CROWN/a-CROWN to boundary/residual conditions.

Architecture is completely different - fo is a nonlinear function of partial derivatives of g

Regression problem — bounds might be too loose to be informative

24



Experiments: Certifying with -CROWN (PINN, 2023)

Ug Ug
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Figure 2: Certifying with 9-CROWN: visualization of the time evolution of ug, and the residual
errors as a function of the spatial temporal domain (log-scale), | fg|, for (a) Burgers’ equation
et all,2019b], (b) Schrodinger’s equation [Raissi et all, 2019b], (¢) Allan-Cahn’s equation

-0.5

-1.0

10°

1072

10+4

1075

and Apiletti, 2023], and (d) the Diffusion-Sorption equation [Takamoto et all,2022].

Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential

equations." Journal of Computational physics 378 (2019): 686-707.

Monaco, Simone, and Daniele Apiletti. "Training physics-informed neural networks: One learning to rule them all?." Results in Engineering 18 (2023): 101023.

Takamoto, Makoto, et al. "PDEBench: An extensive benchmark for scientific machine learning." Advances in Neural Information Processing Systems 35 (2022): 1596-1611.

1072

1073

1078
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Experiments: Certifying with -CROWN (PINN, 2023)
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MC max (10*) MC max (10°)  9-CROWN u; (time [s])

(a) Burgers [Raissi et al|, 2019b]
D) |ue(0,z) — uo(z)|? 1.59 x 10~° 1.59 x 107° 2.63 x 107° (116.5)

lug (t, —1)|? 8.08 x 107% 8.08 x 1078 6.63 x 1077 (86.7)
@ lua (t, 1)|? 6.54x107%  6.54x10°° 9.39 x 1077 (89.8)
B |fo(z,t))? 1.23 x 1072 1.80 x 1072 1.03 x 107! (2.8 x 10°)
(b) Schridinger [Raissi et al|,[2019b]
(D) |ue(0,z) — uo(z)|? 7.06 x 107° 7.06 x 107° 8.35 x 107° (305.2)

lug (t,5) — ue(t, —5)|° 7.38 x 1077 7.38 x 1077 5.73 x 107° (545.4)
@ |0zus(t,5) — Ozue(t,—5)]°  1.14x107°  1.14x107° 531 x107° (2.4 x 10°)
3 |fo(z,t))? 7.28 x 10~* 7.67 x 107* 5.55 x 1072 (1.2 x 10°)
(c) Allen-Cahn ﬂMonaco and ApilettL |2023]
(D) |ue(0,z) — uo(z)|? 1.60 x 1072 1.60 x 1072 1.61 x 1072 (52.7)
) |ue(t,—1) — ua(t,1)|? 566 x10°°  5.66 x 10°° 5.66 x 10 (95.4)
B |fo(z,t))? 10.74 10.76 10.84 (6.7 x 10°)
(d) Diffusion-Sorption [|Takamoto et all,|2021]
D) |ug(0,z)? 0.0 0.0 0.0 (0.2)

lug (t,0) — 12 4.22 x 107* 4.39 x 1074 1.09 x 1072 (72.5)
@ lug(t,1) — DOsus(t,1)|? 2.30 x 107° 2.34x107° 2.37 x 1077 (226.4)
B) |fo(z,t)|? 1.10 x 1073 21.09 21.34 (2.4 x 10°%)

Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential

equations." Journal of Computational physics 378 (2019): 686-707.

Monaco, Simone, and Daniele Apiletti. "Training physics-informed neural networks: One learning to rule them all?." Results in Engineering 18 (2023): 101023.

Takamoto, Makoto, et al. "PDEBench: An extensive benchmark for scientific machine learning." Advances in Neural Information Processing Systems 35 (2022): 1596-1611.

26
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Faithful Knowledge Distillation (FKD, 2023)

* (Can we be sure when we distil a teacher network that the student will match the teacher’s output and
confidence?

* [Intuition:

B (1frr(2)) = fs(2)loo

£ (@2) = 0.977 ) 78 (@2) = 0.977
5D (x2) = 0.683 - (3) ) (@2) = 0.862

3

(3) (a:) = 0 995

argmax fig}.(¢1) =3 - % argmax ffiy(z1) = 3

c

Standard Distillation Faithful Distillation

argmafocD(:z:l)=8 Coor e argmafoD(w1)=3
[+ [+]

27
Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the Knowledge in a Neural Network." stat 1050 (2015): 9.



Faithful Knowledge Distillation (FKD, 2023)

Definition 2 (Faithful Imitator) We say that f : R® — R® is an (e, 0)- faithful imitation of f : R™ — RY

around xg € R™ if:

ds(f(z), f(x)) <8, Va € Be(zo)

(7)

where Be(zo) = {x' € R" | dy(zo,x') < €}, d; : R x R — Rx is a chosen metric function in the output
space, and dg : R™ X R®™ — R>¢ is a metric function in the input space. We refer to any 6 that bounds
de(f(x'), f(2")) as a faithfulness bound for a given e.

Faithful Imitator for Knowledge
Distillation: underestimate § empirically
using a PGD-inspired method,

overestimate it using an extension to
CROWN.

Compare standard distillation (SD), with
other existing losses with similar goals
(ARD, RSLAD) and our proposed faithful
distillation loss (FD) which empirically
minimizes KL divergence of teacher and
student.

23 UNIVERSITY OF
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Table 2: Faithfulness and relative calibration - empirical lower bounds (EMPLB) and faithfulness upper
bounds (FAITHUB) on MNIST, F-MNIST and CIFAR-10. Lower is better.

€

fsp

EMPLB

farD

fRSLAD

frpD

fsp

FArtHUB

farp

fRSLAD

frp

0.025
0.05
0.1
0.15
0.2

MNIST

0.04210.102
0.060+0.129
0.106+0.186
0.17240.246
0.25810.302

0.045+0.113
0.055+0.130
0.078+0.164
0.106+0.197
0.140-+0.229

0.039+0.087
0.049+0.101
0.072+0.120
0.101+0.160
0.138+0.192

0.03310.079
0.041+0.091
0.061+0.117
0.086-0.145
0.11840.174

0.073+0.150
0.17910.257
0.731+0.343
0.97410.123
0.999+0.017

0.061+0.143
0.097+0.108
0.262+0.337
0.636+0.383
0.905+0.230

0.060+0.118
0.101+0.175
0.290+0.319
0.668+0.355
0.889-+0.229

0.05410.113
0.09410.171
0.248.0.305
0.588.0.367
0.88410.238

4/255
© 8/255
é 12/255

" 16/255

20/255

0.099+0.159
0.155+0.212
0.21940.265
0.297+0.310
0.37840.343

0.067+0.112
0.096+0.145
0.129+0.179
0.165+0.214
0.204+0.243

0.053+0.094
0.081+0.130
0.11210.163
0.14810.197
0.19040.226

0.060-+0.099
0.089-+0.131
0.12240.165
0.160+0.199
0.20210.229

0.215+0.267
0.617+0.303
0.89210.267
0.990+0.071
0.999+0.013

0.128+0.182
0.330+0.342
0.678+0.381
0.906+0.235
0.986+0.089

0.341+0.341
0.690+0.370
0.917+0.214
0.988.+0.079

0.123+0.171
0.902.1¢.237

o 4/255
;5 8/255
<12/255

516/255
20/255

0.388+0.166
0.583+0.177
0.66610.165

0.24240.139
0.317+0.155
0.39410.169
0.46210.17s
0.530+0.176

0.226+0.126
0.357+0.148
0.41510.157
0.474+0.164

0.187+0.096
0.24540.114
0.30210.129
0.359+0.142
0.416.10.151

0.983+0.033
1.000+0.002
1.000+0.000
1.000+0.000

0.91040.127
1.000+0.016
1.000+0.002
1.0000.000

0.497+0.176
0.873+0.133
0.990+0.035
0.999.0.008
1.000+0.001

0.47410.182
0.86410.153
0.98940.038
0.99940.009
1.000-+0.001
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Safety in Human Interaction/ Correctness of ML-based Systems
Understanding Decision-Making Process



G UNIVERSITY OF

‘Y OXFORD

Scalable Adversarial Robustness Verification/Certification

 Complete vs. incomplete methods:

» (Can it certify a ResNet50? If YES — incomplete.

* "“Sound, but incomplete” methods: - .
D - R
* Bound propagation (e.g., DiffAl, IBP)

» Convex relaxation optimization-based methods (e.g.

CROWN)

* Smoothing-based methods (e.g. randomized
smoothing)

Conv
RelLU
Conv
RelLU

32
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Randomized Smoothing [Cohen et. al, 2019]

_ o _ o g(z) = argmax P(f(x +¢) =c¢)
* Given a base classifier f we can obtain a smooth classifier. cey
where & ~ N(0,021)

Theorem 1. Let f : R? — Y be any deterministic or
random function, and let ¢ ~ N'(0,02I). Let g be defined
as in (1). Suppose ca € Y and pa,pp € [0, 1] satisfy:

P(f(x+¢€) =ca) > pa >pB > gﬁgl?’(f(m#—s) =c) (2

Then g(x + 0) = ca for all ||6]|2 < R, where

o

R= (27 (pa) — ' (PB)) ©)

Inverse Gaussian / [Left] Decision boundaries of the base classifier f and level sets

CDF of the noise distribution [Right] output distribution given noise.

* Proof based on Neyman-Pearson lemma [Neyman & Pearson, 1933], as tight as possible for £2.
« Other works extend this to other ¢» norms [Yang et al., 2020].

* Can we simplify the analysis?

Cohen, Jeremy, Elan Rosenfeld, and Zico Kolter. "Certified adversarial robustness via randomized smoothing." international conference on machine learning. PMLR, 2019.

Neyman, Jerzy, and Egon Sharpe Pearson. "IX. On the problem of the most efficient tests of statistical hypotheses." Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a
Mathematical or Physical Character 231.694-706 (1933): 289-337. 33
Yang, Greg, et al. "Randomized smoothing of all shapes and sizes." International Conference on Machine Learning. PMLR, 2020.
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A Lipschitz view of Randomized Smoothing (ANCER, 2022)

Proposition 1. Consider a differentiable function g : R™ — R. If sup,||Vg(x)||« < L where || - ||« has a dual
norm ||z|| = max, 2"z s.t. ||z||« <1, then g is L-Lipschitz under norm |- ||«, that is |g(z) —g(y)| < L|jz—y||.

Given the previous proposition, we formalize || - || certification as follows:

Theorem 1. Let g : R® — RX, ¢° be L-Lipschitz continuous under norm || - ||« Vi € {1,...,K}, and
ca = argmax; g*(x). Then, we have argmax; g*(x + §) = ca for all § satisfying:

1
< ca . c#ca .
I8 < 57 (9°* (@) — max g7 (a))

* Remark: randomized smoothing is an instance of Theorem 1 where the smooth classifier enjoys an analytical
form for L by design.

* Choose a smoothing distribution and compute an analytic Lipschitz constant under the dual norm for g —
gives you a certificate under the norm by Theorem 1.

» Can recover the certificates from [Cohen et. al, 2019] for £2 and from [Yang et al., 2020] for several v ones.

34



Anisotropic Certification (ANCER, 2022)

* Lipschitz analysis allows us to obtain anisotropic certificates

* Ellipsoid certificates: gs(z) =Ecn o) [f(z + €)] 16]|.2 = VOTE-16

Proposition 2. & !(gs(z)) is 1-Lipschitz (i.e. L =1) under the || - ||g-12 norm.

Since ®~! is a strictly increasing function, by combining Proposition 2 with Theorem 1, we have:

Corollary 1. Let cy = argmax; g&.(z) , then argmax; gk (x + 0) = ca for all § satisfying:

6l < 5 (27 (65 (@) — 27" (maxg** (@) ).

* Generalized cross-polytope certificates: 9a(z) = Ecuy(—1,1n[f(z + Aé)]

Proposition 3. The classifier gp is 1/2-Lipschitz (i.e. L =1/2) under the |Az| o norm.

Similar to Corollary 1, by combining Proposition 3 with Theorem 1, we have that:

Corollary 2. Let c4 = argmax; g4 (z) , then argmax; g (z + 6) = ca for all § satisfying:

18la1 = 1Al < (952 () — max g7 (2))

Sas UNIVERSITY OF

=) OXFORD
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Anisotropic Certification (ANCER, 2022)

[ Anisotropic | Anisotropic
[ Isotropic ~__ Isotropic

[ Anisotropic
[ Isotropic

| Anisotropic
~__ Isotropic

Examples of points in a toy 2D dataset, as well as potential isotropic and anisotropic certificates.

X
| |
|

!
'

NI
¥

1

i
1

I

Visualization of natural CIFAR-10 images (top) and modified with an imperceptible change that is not
inside the optimal isotropic certified region but is inside the optimal anisotropic one.

* Data-dependent certification requires memorization technique from [Alfarra et al., 2022], imposing a linear
memory cost on the number of samples.
36

Alfarra, Motasem, et al. "Data dependent randomized smoothing." Uncertainty in Artificial Intelligence. PMLR, 2022.
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Anisotropic Certification (ANCER, 2022)

Certificate volume

Accuracy @ £, radius (%)

P - ~
CIFAR-10 Certification 00 025 05 1.0 15 20 25 {o ACR ({3 ACR
COHEN Fixed o 86 71 51 27 14 6 2 0.722 0.722
Cohen et al. (2019) Isotropic DD 82 76 62 39 24 14 8 1.117 1.117
ANCER 86 85 77T 53 31 17 10 1.449 1.772
SwoorsApy  rhedo 82 T2 o0n 82199 5 D& 08 — _— Accuracy @ £, radius (%) 5 ACE B A
Salman et al. (2019a) 1sotropic 827668 20E 2SI T -0 =0 - ertiication 59 025 05 075 1.0 15 20 1
ANCER 83 81 73 48 30 17 8 1.224 1.573
Fixed 7 76 50 37 24 14 9 0.970 0.970 RS4A Fixed o 92 83 75 71 46 0 0 0.775 0.775
1Xed o . . .
MACER Isotropic DD 88 80 66 40 17 9 6 1007 1,007 Yang et al. (2020) Isotropic DD 92 89 82 76 58 6 2 0.946 0.946
Zhai et al. (2019) p : : ANCER 92 90 84 80 63 6 2 0.980 1.104
ANCER 84 80 67 34 15 11 9 1.136 1.481
A © £, radius (%) ImageNet
. . ccuracy 2 radius (0] ) ~ -
ImageNet Certification o (v 15 15 20 25 30 2ACR & ACR RS4A Fixed o 78 73 67 63 0 0 0  0.683 0.683
Vang ot al. (2020) IsotropieDD 79 76 70 65 46 0 0 0729 0729
COHEN Fixed o 70 56 41 31 19 14 12 1.098 1.098 § e aL ANCER 78 76 70 66 48 0 0 0.730 1.513
Cohen et al. (2019) Isotropic DD 71 59 46 36 24 19 15 1.234 1.234
ANCER 70 70 62 61 42 36 29 1.810 1.981
Fixed o 65 59 44 38 26 20 18 1.287 1.287
SMOOTHADV .
Salman et al. (2010,) 1sotropic DD 66 62 53 41 32 24 20 1428 1428
ANCER 66 66 62 58 44 37 32 1.807 1.965

Comparison of top-1 certified accuracy, average certified radius and average certified proxy radius for different certification regimes.
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RANCER: Non-Axis Aligned (RANCER, 2023)

* Anisotropic certification so far has been axis-aligned

[ Anisotropic [ Anisotropic
Isotropic Isotropic

* RANCER extends ANCER to optimize a full covariance matrix for RANCER RANCER
Gaussian noise, resulting in a non-axis aligned certificate

* To achieve it, we use the eigen decomposition of the Hessian of the
loss function at the certified point — corresponding to the “unsafe”
directions of maximal change — which should be smoothed more

* Once rotated with that basis, optimized in the same way as (ANCER,
2022)

[ Anisotropic [ Anisotropic
Isotropic Isotropic
RANCER RANCER

Examples of points in a toy 2D dataset.

Safe and unsafe directions of the Hessian of the loss function at the point, eventually leading to
the pink certified ellipse in the rightmost figure once region is optimized.
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Certifying Ensembles with S-Lipschitzness (SEnsemb, 2023)

Definition 2 (S-Lipschitz function). A function f : R¢ —

* A generalization of Lipschitzness to S-Lipschitzness (avoiding symmetry R is S-Lipschitz for a bounded set S C RY if it holds that:
requirements) enables tight analysis on the theoretical robustness of ensembles —ps(z —y) < f(y) — f(z) < ps(y — ), Vz,y € RY,
through S-certificates. with ps(8) = sup,cg c' 6. If S is convex, then pg corre-

sponds to its support function.

* Limitation of ensembling robust classifiers:

I 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

o /
f; Different top ” /
* One can gain robustness by ensembling... But the more robust the = zwdl‘t“"““ R
o . ) . = Same top
individual classifiers, the lower the possible improvement. Z | © predictions 77
* One can be worse off ensembling than using a single classifier... Even 2
potentially losing all robustness (radius collapses to 0). g
* One will never be worse off if all classifiers predict the same class — but 5 0
then why ensemble? =

Worst individual classifer gap (7)

* Usually end up losing more robustness than gaining — ensembling robust
classifiers reduces robustness.
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Certifiable ML - a network bounding problem

Safety /Robustness

(SEnsemb, 2023) Certifying Ensembles: A General

Certification Theory with S-Lipschitzness
A Petrov, F Eiras, A Sanyal, PHS Torr, A Bibi (ICML)

(RANCER, 2023) RANCER: Non-Axis Aligned

Anisotropic Certification With Randomized Smoothing
T Rumezhak, F Eiras, PHS Torr, A Bibi (WACV)

(ANCER, 2022) AnCer: Anisotropic certification via

sample-wise volume maximization
F Eiras, M Alfarra, MP Kumar, PHS Torr, PK Dokania, B Ghanem, A Bibi (TMLR)

G UNIVERSITY OF
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Reliability /Correctness

(PINN, 2023) Provably Correct Physics-Informed Neural

Networks
F Eiras, A Bibi, R Bunel, KD Dvijotham, PHS Torr, MP Kumar (Pre-print)

(FKD, 2023) Faithful Knowledge Distillation
T Lamb, R Bunel, KD Dvijotham, PHS Torr, MP Kumar, F Eiras (Pre-print)
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/ BLIP-2 generated response

Resulting adv. image

“a dog and cat with
=> | their tongues out and
their heads together”

X BLIP-2 generated response

“the sunset over the
mountains and peaks”
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Abstract

Large vision-language models (VLMs) such as GPT-4 have achieved unprecedented
performance in response generation, especially with visual inputs, enabling more
creative and adaptable interaction than large language models such as ChatGPT.
Nonetheless, multimodal generation exacerbates safety concerns, since adversaries
may successfully evade the entire system by subtly manipulating the most vul-
nerable modality (e.g., vision). To this end, we propose evaluating the robustness
of open-source large VLMs in the most realistic and high-risk setting, where
adversaries have only black-box system access and seek to deceive the model into
returning the rargeted responses. In particular, we first craft targeted adversarial
examples against pretrained models such as CLIP and BLIP, and then transfer these
adversarial examples to other VLMs such as MiniGPT-4, LLaVA, UniDiffuser,
BLIP-2, and Img2Prompt. In addition, we observe that black-box queries on these
VLMs can further improve the effectiveness of targeted evasion, resulting in a sur-
pnsmgly hlgh success rate for generating targeted responses. Our findings provide
ding the adversarial vulnerability of large VLMs
and call for a more thorough examination of their potential security flaws before
deployment in practice. Code is at https:/github.com/yunqing-me/AttackVLM.
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1 Introduction

Large vision-language models (VLMs) have enjoyed tremendous success and demonstrated promising

capabilities in text-to-image generation [52, 65, 69], image-grounded text generation (e.g., image

captioning or visual question-answering) [2, 14, 40, 83], and joint generation [5, 30, 95] due to an

increase in the amount of data, computational resources, and number of model parameters. Notably, 4 3
after being finetuned with instructions and aligned with human feedback, GPT-4 [55] is capable of

conversing with human users and, in particular, supports visual inputs.




